
nn-Meter: Towards Accurate Latency Prediction of
Deep-Learning Model Inference on Diverse Edge Devices

Li Lyna Zhang
1
Shihao Han

1,2
Jianyu Wei

1,3
Ningxin Zheng

1
Ting Cao

1
Yuqing Yang

1
Yunxin Liu

4

1
Microsoft Research

2
Rose-Hulman Institute of Technology

3
University of Science and Technology of China

4
Institute for AI Industry Research (AIR), Tsinghua University

{lzhani,ningxin.zheng,ting.cao,yuqing.yang}@microsoft.com,

hans3@rose-hulman.edu, noob@mail.ustc.edu.cn, liuyunxin@air.tsinghua.edu.cn

ABSTRACT
With the recent trend of on-device deep learning, inference latency

has become a crucial metric in runningDeepNeural Network (DNN)

models on various mobile and edge devices. To this end, latency

prediction of DNN model inference is highly desirable for many

tasks where measuring the latency on real devices is infeasible

or too costly, such as searching for efficient DNN models with

latency constraints from a huge model-design space. Yet it is very

challenging and existing approaches fail to achieve a high accuracy

of prediction, due to the varying model-inference latency caused

by the runtime optimizations on diverse edge devices.

In this paper, we propose and develop nn-Meter, a novel and

efficient system to accurately predict the inference latency of DNN

models on diverse edge devices. The key idea of nn-Meter is divid-

ing a whole model inference into kernels, i.e., the execution units on

a device, and conducting kernel-level prediction. nn-Meter builds

atop two key techniques: (i) kernel detection to automatically detect

the execution unit of model inference via a set of well-designed

test cases; and (ii) adaptive sampling to efficiently sample the most

beneficial configurations from a large space to build accurate kernel-

level latency predictors. Implemented on three popular platforms of

edge hardware (mobile CPU, mobile GPU, and Intel VPU) and eval-

uated using a large dataset of 26,000 models, nn-Meter significantly

outperforms the prior state-of-the-art.

CCS CONCEPTS
• Computer systems organization → Neural networks; Em-
bedded systems.

KEYWORDS
deep neural network, inference latency prediction, edge AI

ACM Reference Format:
Li Lyna Zhang

1
Shihao Han

1,2
Jianyu Wei

1,3
Ningxin Zheng

1
Ting Cao

1

Yuqing Yang
1
Yunxin Liu

4
. 2021. nn-Meter: Towards Accurate Latency

Prediction of Deep-Learning Model Inference on Diverse Edge Devices. In

The 19th Annual International Conference on Mobile Systems, Applications,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8443-8/21/06. . . $15.00

https://doi.org/10.1145/3458864.3467882

and Services (MobiSys ’21), June 24-July 2, 2021, Virtual, WI, USA. ACM, New

York, NY, USA, 13 pages. https://doi.org/10.1145/3458864.3467882

1 INTRODUCTION
Deep Neural Networks (DNNs) have been widely used in today’s

mobile and edge applications [33]. In many applications such as

on-device video analytics, face recognition, AR/VR etc., DNN mod-

els are constrained by efficiency constraints (e.g., latency). To de-

sign a model with both high accuracy and efficiency, model com-

pression [6, 14, 15, 24] and the recent Neural Architecture Search

(NAS) [7, 29, 32, 34] consider the inference latency of DNN models

as the hard design constraint.

However, measuring the inference latency for DNN models is la-

borious and expensive. In practice, it requires developers to perform

a deployment process on the physical device to obtain the latency.

The engineering effort is tremendous for diverse edge devices (e.g.,

mobile CPU/GPU and various AI accelerators) and different infer-

ence frameworks (e.g., TFLite and OpenVINO). Even on a single

device, it may be extremely time-consuming to measure a large

number of models in NAS tasks (e.g., ProxylessNas [7] explores

∼0.3 millions of models in just one round of search). Such a high

cost can hinder the scalability and make the measurement-based

method practically infeasible to support the fast-growing number

of edge devices.

Consequently, approaches have been proposed to predict the

inference latency. For example, the FLOPs
1
based method has been

widely applied to evaluate the efficiency [15, 22, 23, 30], which is

simple but not a direct metric of latency. To predict a model la-

tency, many NAS works [6, 7, 32] build the operator-wise lookup

table. Such operator-level methods sum up the latencies of all oper-

ators. However, they do not consider the model latency differences

caused by runtime optimizations of model graphs. For instance,

many frameworks merge multiple operators into one fused op-

erator to accelerate the inference, which impacts the inference

latency significantly. Recently, the state-of-the-art BRP-NAS [13]

uses graph convolutional networks (GCN) to predict latency of the

NASBench201 [12] dataset on various devices. It captures the run-

time optimizations by learning the representation of model graphs

and corresponding latency. However, this model-graph based ap-

proach heavily depends on the tested model structures and may

not work for many unseen model structures.

In this work, we propose and develop a novel system called

nn-Meter
2
that aims to accurately predict the latency of arbitrary

DNN models on diverse edge devices. The key idea of nn-Meter

1
The definition of FLOPs follows [35], i.e., the number of multiply-adds.

2
nn means neural networks.

81

https://doi.org/10.1145/3458864.3467882
https://doi.org/10.1145/3458864.3467882
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA L. Zhang et al.

is dividing a whole model inference into multiple kernels that are
independent execution units of the model inference on a device.

A kernel may be either a single primitive operator or a fusion of

multiple operators, depending on the runtime and hardware. nn-

Meter builds latency predictors for kernels and predicts the total

latency of a model by the latency sum of all kernels of the model.

This design choice of kernel-level prediction are based on two

observations. First, kernel is the basic scheduling and execution

unit (e.g., GPU kernels) in deep-learning frameworks, particularly

on edge devices. Thus, the notion of kernel naturally captures the

diverse runtime optimizations including operator fusion, the most

important optimization that can largely impact the latency. Second,

despite a very large number of DNN models, the kinds of operators

and kernels are stable with a relative small set. Any models are just

different combinations of operators/kernels. Therefore, kernel-level

prediction is generic enough to support unseen new models.

nn-Meter faces two key challenges. The first challenge is how to

split a model into a proper set of kernels on various edge devices.

Due to the diverse runtime optimizations, the executed kernels are

varying on different devices. For example, the Conv-add is a fused

operator on mobile GPU, but not on mobile CPU and Intel VPU.

Furthermore, many inference frameworks are not open-sourced.

Even for the open-sourced ones, it requires hardware expertise to

determine the kernels. Second, it is non-trivial to build accurate pre-

dictors for the kernels. As we show in Section 5.1, the kernels show

non-linearity between latency and prediction features. Moreover,

the multiple configurable dimensions of kernels lead to a huge pos-

sible searching space for the latency prediction, as huge as billions.

Sampling the whole billion-scale configuration space to get labeled

training data is infeasible. Thus, how to do efficient sampling while

ensuing high prediction accuracy remains a big challenge.

To address the above challenges, we propose two techniques,

automatic kernel detection and adaptive data sampling. To split a

model into kernels, nn-Meter employs a kernel detector that auto-

matically detects the possible kernels on various edge devices in a

black-box matter. We design a set of test cases to detect whether

two operators can be fused or not. A DFS-based rule matching

algorithm is designed to search for the maximum fusion unit (i.e.,

kernel) in a model. To reduce the data sampling cost, nn-Meter uses

an adaptive data sampling algorithm that leverages both the model

design and hardware latency characteristics. It firstly prunes the

kernel configurations that are rarely considered in DNN models.

Then, an iterative sampling process is executed to automatically de-

tect the most beneficial configurations to sample, instead of random

selection. Finally, we build machine-learning regressors to learn

the non-linearity with the sampled data.

To demonstrate the effectiveness of nn-Meter, we further pro-

pose and create a large benchmark dataset that contains 26,000

representative Convolutional Neural Network (CNN) models
3
. Un-

like previous works that use datasets with a smaller prediction

scope, i.e., the NASBench201 dataset, models in our dataset are

with various operators, configurations, graphs, and latency ranges.

We believe that our dataset sets a new bar for latency prediction of

3
Due to the poor support of other types models (e.g., NLP ones) on edge devices, we

currently focus on CNNs. The techniques of nn-Meter are generic to other models.

Figure 1: Graph optimizations of framework.

DNN models and it may also be used for other tasks such as NAS

and channel search.

We implement and evaluate nn-Meter on three popular plat-

forms of edge devices: mobile CPU, mobile GPU, and Intel VPU (a

representative AI accelerator for edge devices). Significantly, nn-

Meter achieves a prediction accuracy
4
of 99.0%, 99.1%, 83.4% on

the CPU, GPU, and VPU, respectively, significantly outperforming

the state-of-the-art approaches. We also conduct comprehensive

experiments to evaluate the effectiveness of kernel-level prediction

and adaptive data sampling, and report nn-Meter system overhead.

While we have obtained promising results of nn-Meter on the

three platforms, it requires joint efforts across the community to

apply nn-Meter onto many other types of edge devices. To this end,

we will open-source
5
our dataset, test cases, and code for other

researchers and developers to build latency predictors for their

own devices. Collectively, we expect that the community can work

together to realize accurate latency prediction of DNN models for

a variety of edge devices.

We summarize our key contributions as follows:

• We propose and design nn-Meter, a novel and efficient sys-

tem to accurately predict inference latency of CNN models

on diverse edge devices.

• We design two key techniques for nn-Meter, including auto-

matic kernel detection to capture the diverse operator-fusion

behaviors on edge devices, and adaptive data sampling to

reduce the cost of building kernel-level latency predicators.

• We create a new and large latency-prediction benchmark

dataset that contains 26,000 representative CNNmodels with

various model graphs, configurations, and latency ranges.

• We implement and evaluate nn-Meter onmobile CPU,mobile

GPU and Intel VPU, and demonstrate that nn-Meter achieves

a significantly better prediction accuracy across different

devices and models, compared with existing approaches.

2 BACKGROUND AND MOTIVATION
2.1 CNN Model Characteristics
Fast evolving CNNmodels. Since the milestone work of AlexNet,

it takes years of DNN experts’ efforts to invent a number of CNN

models, including VGG, GoogleNet, ResNet, DenseNet, SqueezeNet,

MobileNetv1, etc. Recently, NAS has demonstrated much success in

4
Defined as within a prediction error of ±10% [13].

5
https://github.com/microsoft/nn-Meter

82

https://github.com/microsoft/nn-Meter

nn-Meter MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA

Conv

Active

_kernel conv_2d_1x1 () {
for(i=0;i<out.row;i++)
for(j=0;j<out.col;j++)

for(cout=0;cout<out.chan;cout++)
for(cin=0;cin<in.chan;cin++)
out[i][j][cout]+=

in[i][j][cin]*filter[cout][cin]; }

Conv+
Active

_kernel conv_2d_1x1_active () {
for(i=0;i<out.row;i++)
for(j=0;j<out.col;j++)

for(cout=0;cout<out.chan;cout++) {
for(cin=0;cin<in.chan;cin++)
out[i][j][cout]+=in[i][j][cin]*filter[cout][cin];

out[i][j][cout]=active(out[i][j][cout]); } }

Model graph Backend implementation

Operator fusion

_kernel active () {
for(i=0;i<out.row;i++)
for(j=0;j<out.col;j++)

for(c=0;c<out.chan;c++)
out[i][j][c]=active(in[i][j][c]);}

Figure 2: Kernel implementation for operator fusion(“++" is
used to represent fusion in this paper).

Model Operator sum Kernel sum

Latency Latency Error Latency Error

CPU 45.57ms 51.23ms 12.42% 45.41ms 0.35%

GPU 10.18ms 12.31ms 20.92% 9.91ms 2.65%

VPU 22.64ms 33.86ms 49.56% 23.18ms 2.38%

Table 1: MobileNetv2 latency.

automating DNN design for various deep learning tasks [7, 23, 30].

As a result, it’s much faster to design a novel CNN model with

high accuracy by NAS. For instance, the OFA [6] has produced 50

high-accuracy models with different latency constraints.

Stable primitive operators. Despite the vast amount of DNN

models, the operator types are with a small set. Widely applied

operators include convolution2d (Conv), depthwise convolution2d

(DWConv), activations (e.g., relu, relu6 and hswish), fully connected

layer (FC), BatchNorm layer (bn), and element-wise operators (e.g.,

add). Each operator has a set of parameters to configure in the

model, which can result in significant inference latency changes.

Too large space for model-level prediction. We address the

difficulties in the model-level prediction. Considering a model with

𝑁 nodes, where each node has 𝐷 features (i.e., operator type and

configuration), there are maximum 𝑁 × (𝑁 − 1) edges in a model

DAG. For each node, the number of operator types is small. But

one operator can have an unbounded range of configurations. To

this end, the full prediction space is huge with possible 𝐷𝑁 × 𝑁 ×
(𝑁 − 1) models. Since model-level prediction learns from model

graphs, the training data should cover the full set of operator types,

edge connections, and various operator configurations. While it’s

challenging to construct and label such training set from the very

large space, model-level prediction usually has poor performance

on unseen model graphs.

Unaware of runtime optimization of operator-level predic-
tion. As a result, prediction with fine-grained levels such as the

existing operator-level approaches is more promising. However,

operator-level prediction can not capture the graph optimizations

on the edge devices, and hence is inaccurate. As shown in Table 1,

the prediction produces large errors on three devices. In this paper,

we propose the kernel-level prediction that is a fine-grained level

and optimization-aware approach.

2.2 Optimizations of Inference Frameworks
Inference frameworks usually conduct a series of model graph

transformations to optimize the model and reduce inference la-

tency. Fig. 1 shows the framework optimization process. Most of

the optimizations are backend independent, such as constant folding

(e.g., 𝑎𝑑𝑑 (𝑐1, 𝑎𝑑𝑑 (𝑥, 𝑐2))->𝑎𝑑𝑑 (𝑥, 𝑐1 + 𝑐2)) and common expression

elimination. These optimizations should be done no matter what

the target backend is.

There are also optimizations dependent on the target backend

implementation. The major one is operator fusion illustrated in

Fig. 2. It can fuse operators that satisfy certain rules (e.g., specific

operator type and connection) together. This optimization can avoid

storing intermediate results into memory to reduce memory access

cost. For example, in Fig. 2, rather than calculating all the elements

in the convolution kernel and then executing activation, the fused

kernel executes activation after each element is calculated. Operator

fusion requires the backend to implement the according kernel of

the fused operators. Therefore, the fusion rules are various on

different backends.

To this end, nn-Meter preprocesses the designed CNN model by

backend-independent optimizations using an open-source frame-

work (e.g., Tensorflow). The output model is used as the input of the

prediction process. The operator-fusion rules of different backends

will be detected by nn-Meter’s test cases.

2.3 Rationale for Kernel-level Prediction
To predict a CNN model latency, nn-Meter splits model graph into

kernels, and sum up predicted kernel latencies as the model latency.

This method is based on the assumption that kernels run se-

quentially on each device, even for those ones without dataflow

dependency. This assumption is valid on current edge AI platforms

(rather than server platforms) mainly for two reasons. Firstly, com-

putation resources of edge chips are normally limited. It is not that

beneficial to run multiple kernels parallelly. For example, server

CPUs can have dozens of cores. Running one kernel at a time cannot

utilize all the cores. However, edge CPUs only have several cores,

which are unlikely to have spare ones to run multiple kernels at a

time. Secondly, even although some AI chips have high computa-

tion bandwidth, due to the power and chip area restriction, there is

no complex hardware support (e.g., multi-stream of CUDA GPUs)

to run multiple kernels parallelly. Very likely, this assumption can

be valid for future edge AI devices too.

As far as we have verified, kernels all run sequentially on current

edge AI platforms, such as TFLite, SNPE, MNN, NCNN, and MACE.

There are also many works before use latency sum of operators as

the model latency also based on this assumption [5, 7, 11, 19, 32].

3 NN-METER DESIGN
In this section, we describe the overall architecture of nn-Meter

and the benchmark dataset collection.

Overview. Fig. 3 illustrates the system architecture. It shows two

core components to realize accurate latency prediction for a DNN

model: Kernel Detection and Adaptive Data Sampling. Conceptually,

83

MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA L. Zhang et al.

Figure 3: System architecture of nn-Meter. It offline detects
fusion rules and builds ML predictors of kernels.

the former automatically divides the target model into a set of

kernels, and the latter samples the most beneficial configurations

from a large space to build accurate kernel-level latency predictors.

Then, for each kernel, we extract the features and predict the latency.

nn-Meter sums up predicted kernel latencies as the model latency.

Kernel Detection. It consists of well-designed test cases to detect

fusion rules between two operators and an algorithm to search all

the kernels in a model. We offline collect all the fusion rules. For

online model prediction, the kernel search algorithm recursively

applies these rules to the target model to find all the kernels. We

present the technical details in Section 4.

Adaptive Data Sampling. It offline builds machine learning predic-

tors for all kernels on the target device. For each kernel, it samples

the most beneficial configurations through an iterative sample pro-

cess. The sampler samples from a prior possibility distribution, that

describes the considered kernel configurations in model CNN de-

sign. We design a test set for evaluating the quality of sampled data.

At each iteration, a new machine learning predictor evaluates the

performance with the test set. For data with large prediction errors,

we perform fine-grained channel number sampling around them.

We describe the details in Section 5.

Benchmark Dataset Collection. To evaluate the effectiveness of
nn-Meter on an arbitrary DNN model, we need a representative

dataset that covers a large prediction scope.We consider two scenar-

ios. First, the DNN model can be consisting of any type of primitive

operators and the various edge connections among them. Second,

each type of operator in a model graph can have many possible

configurations. For instance, the channel numbers of the Conv can

be configured with any positive integer. Existing works [5, 13, 28]

evaluate on either a small dataset or the NASBench201. The predic-

tion scope is small, and thus they can not serve our purpose. For

example, the operators in NASBench201 models are Conv, Pooling,

add, and FC, which are few (14 types in our dataset). Moreover,

the operator configurations (e.g., channel number and stride) are

configured with fixed numbers.

In this work, we consider the large prediction scope and gen-

erate a large dataset that is applicable to channel search and NAS

scenarios. First, we collect 12 state-of-the-art CNN models on the

ImageNet2012. They are from both manual-designed and NAS-

searched models with totally different operator types and configu-

rations. For each model (e.g., AlexNet), we generate 2,000 variants

(e.g., AlexNets) by re-sampling the output channel number and ker-

nel size for each layer. Specifically, the new output channel number

is randomly selected from [0.2 ×𝐶𝑜𝑢𝑡 , 1.8 ×𝐶𝑜𝑢𝑡], and the kernel

size is sampled from {1, 3, 5, 7, 9}. Besides, we add 2,000 models

avg Latency(ms)

Model FLOPs Mobile CPU Mobile GPU Intel VPU

variants (M) min - max min - max min - max

AlexNets 973 7.1 - 494.4 0.4 - 81.7 2.1 - 47.3

VGGs 28422 178.4 - 10289 20.1 - 1278 25.6 - 1467

DenseNets 1794 109.6 - 431.6 26.7 - 69.5 26.4 - 70.7

ResNets 4151 35.9 - 1921.7 7.3 - 329.5 10.7 - 145.5

SqueezNets 1597 42.7 - 524.9 7.5 - 72.2 6.9 - 57.3

GoogleNets 1475 115.5 - 274.6 23.0 - 49.0 12.2 - 24.4

MobileNetv1s 547 27.5 - 140.0 5.5 - 28.8 8.9 - 37.0

MobileNetv2s 392 15.6 - 211.0 3.5 - 37.0 11.3 - 86.1

MobileNetv3s 176 10.4 - 78.4 4.3 - 18.6 17.4 - 70.8

ShuffleNetv2s 307 22.2 - 84.3 - 20.9 - 44.2

MnasNets 327 25.6 - 99.3 5.8 - 24.1 19.8 - 60.9

ProxylessNass 532 34.5 - 195.9 7.9 - 72.2 18.0 - 77.8

NASBench201 97.5 5.6 - 27.9 1.8 - 8.3 2.3 - 6.4

Table 2: The FLOPs and latency of each model variants in
our proposed dataset. It covers a wide spectrum.

with the highest test accuracy on CIFAR10 from the NASBench201,

where each model has a different set of edge connections.

In total, our dataset contains 26,000 models with various opera-

tors (14 types), configurations (144,217 unique points), and edges. It

has 2,012 different model graphs, while the remaining 24k models

have different configurations. It supports both the 224×224×3 and
32×32×3 input image sizes. As shown in Table 2, the dataset covers

a wide spectrum with different levels of FLOPs and latency.

4 KERNEL DETECTION
As discussed in Section 2.2, one key reason of nn-Meter’s high

prediction accuracy is to incorporate the knowledge of graph op-

timization of the framework. Out of the optimizations, operator

fusion is the backend-dependent one that impacts latency the most.

This section will introduce how the test cases of nn-Meter are de-

signed to detect the fusion rules of a target backend and find all

kernels of a CNN model.

4.1 Test Case Design
There are two major challenges of finding fusion rules and kernels.

The first is that many inference backends for edge platforms are

closed source. It is unable to get the kernels from the source code.

The second is that there are arbitrary CNN models. To support the

prediction of all models, themethod to detect the fusion rules should

be independent of specific model graphs. To solve the issue, we first

analyze the essential features that affect the fusion implementation,

then design test cases based on the features to reflect the fusion

rules of a backend, and finally recursively apply these rules to a

model graph to find all its constituent kernels.

Design principles. Our test case design is driven by two features

of a CNNmodel which impact the fusion rules, i.e., operator type and
operator connection. (We consider each operator as a type here. Type

of fused operators will be discussed in Section 4.2.) Operator type

can impact fusion rules because the fusion of different operators

requires different implementation cost. For example, the kernel

code (more precisely, its loop body) of injective operators such

as activation functions in Fig. 2 can directly be connected to the

code of other operators, and automatically generate a new kernel.

84

nn-Meter MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA

Figure 4: Operator connections: (a) single inbound and out-
bound; (b) multiple outbounds; (c) multiple inbounds.

Hence, this kind of fusion is widely implemented by backends. For

some non-injective operators such as pooling, their codes cannot

be easily connected to other operators, and thus the fusion gets less

supported.

Besides of operator type, operator connection also impacts fusion

rules. This is because improper fusion can not only cause additional

time cost, but also cyclic operator dependency. Although the model

graphs are arbitrary, they are all composed of three basic connection

types as Fig. 4 shows: single in/outbound, multi-outbound and

multi-inbound.

Suppose the operator fusion of the predecessor and successor

pair in the graph are all supported by the backend. For the single

in/outbound connection, Op1 and Op2 will be fused. However, for

the multi-outbound connection (Fig. 4(b)), if both (Op3,Op4) and

(Op3,Op5) are fused, Op3 will be unnecessarily calculated twice.

Even if only (Op3,Op4) is fused, the fusion requires to keep the

output tensors of both Op3 and Op4 at the same time, which can

increase the memory cost. What is more, if there is an edge from

Op5 to Op4, the fusion of (Op3,Op4) causes a dependency cycle

in the graph, which breaks the acyclic requirement for a model

graph. For the multi-inbound connection (Fig. 4(c)), the fusion of

(Op6,Op8) or (Op7,Op8) will not invoke unnecessary cost. Besides,

the no-fusion for multi-outbound rule makes sure this fusion will

not cause cyclic dependency. Particularly, in the perspective of time

saving, there should be no preference for (Op6,Op8) or (Op7,Op8)

fusion, because both avoid the write and read of the Op8 input.

Then, it is possible the first visited inbound would be fused. To

conclude, operator connections can impact fusion rules, which

requires test cases to detect them too.

The same principles apply when the number of out/inbounds

is bigger than two. Thus, no test cases of nn-Meter is designed

specifically for them.

Test cases Based on the analysis above, the test cases cover both

operator type and connection to detect the fusion rules of different

backends. For operator type, our test cases include the single in-

/outbound connection permutation of every two possible operators,

to detect whether they can be fused. Then, four fusible operators

are selected to compose multi-in/outbound connections as Fig. 4 to

detect whether they can still be fused.

The running time difference of connected and separated opera-

tors is used as the metric to judge whether fusion happens, since

fusion reduces latency by connecting calculation on the same el-

ement together. That is, for a single in/outbound connection like

Fig. 4(a), if the time of operators follows Inequation 1, they are

regarded as being fused as Op1++Op2.
𝑇𝑂𝑝1 +𝑇𝑂𝑝2 −𝑇(𝑂𝑝1,𝑂𝑝2) > 𝛼 ∗𝑚𝑖𝑛(𝑇𝑂𝑝1,𝑇𝑂𝑝2) (1)

In the inequation, 𝑇𝑂𝑝1 and 𝑇(𝑂𝑝1,𝑂𝑝2) mean the measured time

of Op1 and (Op1,Op2) connection respectively. 𝛼 is the empirical

Backend

𝑇𝑝𝑜𝑜𝑙
(`𝑠)

𝑇𝑟𝑒𝑙𝑢
(`𝑠)

𝑇(𝑝𝑜𝑜𝑙,𝑟𝑒𝑙𝑢)
(𝑇𝑝𝑜𝑜𝑙 +𝑇𝑟𝑒𝑙𝑢)

Rule

VPU 13 26 16 (39) “pool_relu":True

GPU 5.08 3.50 6.00 (8.60) “pool_relu":True

CPU 23.60 0.81 24.48 (24.42) “pool_relu":False

Table 3: A fusion detection example (pool, relu).

Figure 5: A kernel search example on a subgraph of
ResNet18 model. The found kernels are {maxpool,
Conv++bn++relu, Conv++bn++add++relu}.

coefficient (set to 0.5 in our experiments) as a threshold. Table 3

uses (pool,relu) as an example to show the measured time and the

detected rules (note that the VPU timing resolution is `𝑠).

Similarly, for the multi-in/outbound connection like Fig. 4(c), the

candidate fusion plan with the closest time cost as the real time is

regarded as the detected fusion plan. That is to pick the closest one

among𝑇𝑂𝑝6 +𝑇𝑂𝑝7 +𝑇𝑂𝑝8,𝑇𝑂𝑝6++𝑂𝑝8 +𝑇𝑂𝑝7, and𝑇𝑂𝑝6 +𝑇𝑂𝑝7++𝑂𝑝8.
The detected fusion rules are recorded in JSON format. It is easy

to be read by other algorithms or updated manually, such as adding

known rules by framework designers.

4.2 Find All Kernels of a Model
Based on the detected fusion rules, for a model graph, nn-Meter re-

cursively applies the rules to the graph to find all the constituent ker-

nels (i.e., fused operators). The approach is shown in Algorithm 1.

The algorithm traverses the graph in a depth-first order from the

root operator (line 22). If two operators (𝑂𝑝𝑟𝑒𝑑 ,𝑂𝑠𝑢𝑐𝑐) can be fused

according to the rules (line 11), a new fused operator 𝑂𝑝𝑟𝑒𝑑++𝑂𝑠𝑢𝑐𝑐
is created (line 2). The in/outbounds of the new operator are the

union of the in/outbounds of 𝑂𝑝𝑟𝑒𝑑 and 𝑂𝑠𝑢𝑐𝑐 . The type of the

new operator is the same as 𝑂𝑝𝑟𝑒𝑑 , since generally the kernel code

of 𝑂𝑠𝑢𝑐𝑐 is appended to 𝑂𝑝𝑟𝑒𝑑 (line 5). Then, the new operator

𝑂𝑝𝑟𝑒𝑑++𝑂𝑠𝑢𝑐𝑐 will replace 𝑂𝑝𝑟𝑒𝑑 and 𝑂𝑠𝑢𝑐𝑐 in the graph. The tra-

verse will continue from this new operator (line 18). The final output

of the algorithm is a set of all constituent kernels of the graph.

Take Fig. 5, a subgraph of ResNet18, as an example to illustrate

the fusion process. Suppose that the fusion rules related to this

graph are as following (detected on the GPU backend). For multi-

in/outbound rules, 0, 1, and 2 mean no fusion, fusion with the

left-most in/out bound, and fusion with the right-most in/outbound

respectively.

{"pool_add": True, "add_relu": True, "pool_conv": False,
"conv_bn": True, "conv_relu": True, "conv_conv": False,
"conv_add": True, "multi-inbound": 1, "multi-outbound": 0}

85

MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA L. Zhang et al.

Algorithm 1 Kernel searching

Input:𝐺 a CNN model graph; 𝑅 a set of fusion rules for a backend;

Output: Updated𝐺 with fused operators

1: function Fuse(𝑂𝑝𝑟𝑒𝑑 ,𝑂𝑠𝑢𝑐𝑐)

2: 𝑂 ← add a new operator in𝐺 as𝑂𝑝𝑟𝑒𝑑 ++𝑂𝑠𝑢𝑐𝑐

3: 𝑂.𝑖𝑛 ← 𝑂𝑝𝑟𝑒𝑑 .𝑖𝑛 ∪𝑂𝑠𝑢𝑐𝑐 .𝑖𝑛 −𝑂𝑝𝑟𝑒𝑑

4: 𝑂.𝑜𝑢𝑡 ← 𝑂𝑝𝑟𝑒𝑑 .𝑜𝑢𝑡 ∪𝑂𝑠𝑢𝑐𝑐 .𝑜𝑢𝑡 −𝑂𝑠𝑢𝑐𝑐

5: 𝑂.𝑡𝑦𝑝𝑒 ← 𝑂𝑝𝑟𝑒𝑑 .𝑡𝑦𝑝𝑒

6: remove𝑂𝑝𝑟𝑒𝑑 ,𝑂𝑠𝑢𝑐𝑐 from𝐺

7: return𝑂
8: end function
9: function DFStraverse(𝑂𝑝𝑟𝑒𝑑)

10: for𝑂𝑠𝑢𝑐𝑐 ∈ 𝑂𝑝𝑟𝑒𝑑 .𝑜𝑢𝑡 do
11: if 𝑅𝑢𝑙𝑒𝑓 𝑢𝑠𝑒 (𝑂𝑝𝑟𝑒𝑑 .𝑡𝑦𝑝𝑒,𝑂𝑠𝑢𝑐𝑐 .𝑡𝑦𝑝𝑒)
12: and (len(𝑂𝑝𝑟𝑒𝑑 .𝑜𝑢𝑡)==1 or 𝑅𝑢𝑙𝑒𝑚𝑢𝑙𝑡𝑖𝑜𝑢𝑡 ())
13: and (len(𝑂𝑠𝑢𝑐𝑐 .𝑖𝑛)==1 or 𝑅𝑢𝑙𝑒𝑚𝑢𝑙𝑡𝑖𝑖𝑛 ()) then
14: 𝑂𝑛𝑒𝑥𝑡 ← Fuse(𝑂𝑝𝑟𝑒𝑑 ,𝑂𝑠𝑢𝑐𝑐)
15: else
16: 𝑂𝑛𝑒𝑥𝑡 ← 𝑂𝑠𝑢𝑐𝑐

17: end if
18: DFStraverse(𝑂𝑛𝑒𝑥𝑡)

19: end for
20: end function
21: ⊲ Initial traverse input is the root of𝐺

22: DFStraverse(𝑂𝑟𝑜𝑜𝑡)

VPU GPU CPU

kernel # kernel # kernel #

Conv++bn++relu 9 Conv++bn++relu 9 Conv++bn++relu 9

maxpool 1 maxpool 1 maxpool 1

Conv++bn 11 Conv++bn++add++relu 8 Conv++bn 11

add++relu 8 Conv++bn 3 add++relu 8

avgpool 1 avgpool 1 avgpool 1

FC 1 FC 1 FC 1

Table 4: Found kernels for ResNet18.

The algorithm visits maxpool first, and checks the fusion rules

of (maxpool, add). They cannot be fused due to the failure of the

multi-outbound rule. Add operator is visited next. It can be fused

with its outbound relu as add++relu. The algorithm then goes back

to check the fusion of maxpool with its next outbound Conv1. They

cannot be fused due to the multi-outbound and “pool_conv” rules.

(Conv1, bn) can be fused as Conv1++bn with an operator type as

Conv. Next, since “conv_relu” rule is true, Conv1++bn can be further

fused with relu as Conv1++bn++relu. However, it cannot be fused with
Conv2 since the “conv_conv” rule is false. Conv2 is fused with its

outbound bn as Conv2++bn. Finally, because “conv_add” rule is true,
and Conv2++bn is also the first fusable inbound (multi-inbound rule)

of add++relu, they can be fused together as Conv2++bn++add++relu. Ta-
ble 4 shows all the found kernels of ResNet18 on the three backends.

The kernels on the CPU and VPU are different from the GPU be-

cause their rule “conv_add” is false. Therefore, (Conv2++bn, add++relu)
cannot be fused as the GPU backend.

Although the current detection method is only for operator fu-

sion, the idea can be used to detect other graph optimizations too,

such as the constant folding example𝑎𝑑𝑑 (𝑐1, 𝑎𝑑𝑑 (𝑥, 𝑐2))->𝑎𝑑𝑑 (𝑥, 𝑐1+
𝑐2) mentioned in Section 2.2.

Figure 6: Model latency percentage breakdown. Conv and
DWConv are the latency-dominating kernels.

5 LATENCY PREDICTOR
This section introduces the method to build latency predictors for

kernels and models. We start by addressing the challenges in non-

linear latency pattern and expensive sampling cost.

5.1 Kernel Characterization
Conv and DWConv dominate the latency of a model. By ap-

plying the kernel detection to the target model, we get a set of ker-

nels. However, not all kernels account equally for the latency. Fig. 6

shows the model latency percentages by kernel types. We make the

following observations: (1) In most models, Conv (Conv++bn++relu)
and DWConv (DWConv++bn++relu) account for the main latency per-

centages. On average, Conv and DWConv take 94.2%, 91.91%, 75.5%

of the model latency on the CPU, GPU, and VPU, respectively. (2)

The latency of FC and element-wise operators (i.e., Others in Fig. 6)

are relative large on the VPU. It’s also necessary to estimate these

small kernels for accurate prediction. For instance, FC can take

47.4% latency of AlexNet. Among all the detected kernels, Conv is

the most challenging one due to the large sample space. We mainly

take Conv as the example in the following discussion.

A large sample space of Conv. The possible configurations of
a kernel decides the sample space. For the latency-dominating

Conv and DWConv kernels, the primary configuration parameter

includes: input height 𝐻 , input width𝑊 , kernel size 𝐾 , stride 𝑆 ,

input channel number𝐶𝑖𝑛 and output channel𝐶𝑜𝑢𝑡 . Since𝐻 usually

is equal to𝑊 for a kernel in CNN models, we encode it as a 5-

dimension vector: (𝐻𝑊 , 𝐾 , 𝑆 , 𝐶𝑖𝑛 , 𝐶𝑜𝑢𝑡).

We collect 24 CNN models from PyTorch model zoo and get

all the Conv configurations. As shown in Table 5, CNN models

configure 𝐻𝑊 , 𝐾 , 𝑆 from a small range of numbers. However, the

range of𝐶𝑖𝑛 and𝐶𝑜𝑢𝑡 are unbound. Among these models,𝐶𝑖𝑛 varies

from minimal 3 to maximum 2160. The full sample space size is

the multiplication of the size of every configuration dimension. To

this end, the latency-dominating Conv has a vast amount (i.e., ≈
0.7 billion) of configurations to sample.

Non-linear latency pattern. Existingworks [5, 27, 28] assume the

linearity between operator configurations and the corresponding

latency. For instance, Conv with a larger 𝐻 has a larger latency.

However, as shown in Fig. 7 and Fig. 8, we observe that the 𝐾 , 𝐻𝑊 ,

𝐶𝑖𝑛 , 𝐶𝑜𝑢𝑡 show the non-linearity pattern on our measured devices.

Instead, 𝐻𝑊 and 𝐶𝑜𝑢𝑡 exhibit the staircase pattern, in which Conv

with two different 𝐻𝑊 /𝐶𝑜𝑢𝑡 may have the same latency. These

non-linearities reflect the complexities in hardware optimizations.

86

nn-Meter MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA

Dimension Sample space

input 𝐻𝑊 224, 112, 56, 32, 28, 27, 14, 13, 8, 7, 1

kernel size 𝐾 1, 3, 5, 7, 9

stride 𝑆 1, 2, 4

𝐶𝑐𝑖𝑛 range(3, 2160)

𝐶𝑜𝑢𝑡 range(16, 2048)

Table 5: Sample space of Conv++bn++relu. It contains ≈ 0.7 bil-
lion configurations.

(a) Kernel Size (b) Input HW

Figure 7: Conv++bn++relu with (a): different kernel sizes
(𝐻𝑊 =224, 𝐶𝑖𝑛=3, 𝐶𝑜𝑢𝑡=32, 𝑆=1); (b): different input height-
s/widths. (𝐶𝑖𝑛=𝐶𝑜𝑢𝑡=64, 𝐾=3, 𝑆=1)

Figure 8: Latency of Conv++bn++relu with different output
channel numbers. The groundtruth with sampling all chan-
nel numbers shows a staircase pattern on VPU and GPU.
(𝐻𝑊 =112, 𝐶𝑖𝑛=32, 𝐾=3, 𝑆=1)

Random samplingmisses hardware-crucial data. To learn the

non-linearity between configurations and latency, we need to gener-

ate a training set (i.e., variously configured kernels and the latencies)

for regression. While it’s unfeasible to sample and measure all the

configurations of Conv, a direct method is random sampling.

However, we argue that it’s difficult to build accurate predictors

by random sampling. As shown in Fig. 8, random sampling ignores

many important configurations (e.g., 𝐶𝑜𝑢𝑡=66 on the VPU). These

crucial data reflect the complex hardware optimizations. Without

them, predictors can easily learn an inaccurate latency pattern. To

capture the staircase pattern on GPU and VPU, we should sample

more data in the channel number dimension.

Main takeaways. Conv and DWConv are the latency-dominating

kernels, and the prediction accuracy is most important to final

model performance. However, the large sample space of Conv intro-

duces the challenges for sampling and measurement (i.e., labeling).

Random sampling ignores many crucial data as shown in Fig. 8.

5.2 Adaptive Data Sampling

Algorithm 2 Adaptive Data Sampling Algorithm

Input: 𝑃 prior possibility distribution from existing model zoo;

𝑁 initial data to sample from 𝑃 ;𝑇𝐷 initial Test set;

𝑀 , number of data to sample for fine-grained sampling

𝑒 , the error threshold for regression model performance;

Output: all the sampled data (𝑋 ,𝑌)

1: function FineGrainedSample(𝑋 ,𝑀)

2: for 𝑥 ∈ 𝑋 do
3: 𝐷 ← sample𝑀 data, we fix the (𝐻𝑊 , 𝐾 , 𝑆), channel numbers

are randomly sampled from range (0.4𝐶𝑜 , 1.2𝐶𝑜)

4: 𝑋𝑛𝑒𝑤 ← 𝑋𝑛𝑒𝑤+𝐷

5: end for
6: 𝑌𝑛𝑒𝑤 ←MeasureLatencyonDevice(𝑋𝑛𝑒𝑤)

7: return (𝑋𝑛𝑒𝑤 ,𝑌𝑛𝑒𝑤)

8: end function
9:

10: ⊲ initialize 𝑁 data from prior distribution to measure

11: (𝑋 ,𝑌)← sample 𝑁 data from distribution 𝑃

12: 𝑓← Construct regression model with (𝑋𝑡𝑟𝑎𝑖𝑛 ,𝑌𝑡𝑟𝑎𝑖𝑛)

13: 𝑇𝐷 ←𝑇𝐷 + (𝑋𝑡𝑒𝑠𝑡 , 𝑌𝑡𝑒𝑠𝑡)

14: 𝑒 (𝑓) ← test 𝑓 on𝑇𝐷

15: ⊲ perform fine-grained sampling for inaccurate data

16: while 𝑒 (𝑓) > 𝑒 do
17: 𝑋 ∗ ← select data with large predict error from𝑇𝐷

18: (𝑋𝑖 , 𝑌𝑖)←FineGrainedSample(𝑋 ∗,𝑀)

19: (𝑋 , 𝑌)← (𝑋 , 𝑌)+ (𝑋𝑖 , 𝑌𝑖)

20: update regression model 𝑓 with (𝑋𝑡𝑟𝑎𝑖𝑛 ,𝑌𝑡𝑟𝑎𝑖𝑛)

21: 𝑇𝐷 ←𝑇𝐷 + (𝑋𝑡𝑒𝑠𝑡 , 𝑌𝑡𝑒𝑠𝑡)

22: 𝑒 (𝑓) ← test 𝑓 on𝑇𝐷

23: end while

Instead of random selection, the main idea is to sample the most

beneficial data from the kernel configuration space. It covers (1)

the configuration range in CNN design, and (2) hardware-crucial

configurations that reflect the hardware optimizations and can

significantly impact the prediction accuracy.

Driven by the two goals, we first prune the rarely-considered

configurations by constraining the sampling distribution. This lever-

ages the observation that many configurations are unlikely selected

in state-of-the-art CNN models. And, the considered configurations

are non-uniformly distributed in the sample space. For instance,

due to the efficiency and accuracy, modern CNNs do not consider

the Conv with large (224, 1, 1, 2160, 2048) and small (1, 1, 1, 3, 16)

configurations. Second, we run an iterative process to sample more

data around inaccurate prediction data. These data are treated as

the hardware-crucial data. Since Conv has a 5-dimension configura-

tion, we leverage the observation in Fig. 8 to sample in the channel

number dimension.

To this end, we propose adaptive data sampling. Algorithm 2

illustrates the main steps. First, to generate sufficient configurations

that are likely to be considered in CNN design, we sample by the

prior possibility distribution (line 11). Then, to evaluate the sampled

data quality, we build the machine learning predictor and design a

test set for evaluation (line 12-14). Finally, we perform fine-grained

channel number sampling for data with large prediction errors (line

1-8). The iterative process continues until the predictor accuracy

meets user’s requirements (line 16-23).

87

MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA L. Zhang et al.

Kernel Features

Collected Data

CPU GPU VPU

Conv++bn++relu 𝐻𝑊 ,𝐶𝑖𝑛 ,𝐶𝑜𝑢𝑡 ,𝐾

𝑆 , FLOPs, params

15824 14040 39968

DWConv++bn++relu 𝐻𝑊 ,𝐶𝑖𝑛 , 𝐾 , 𝑆 ,

FLOPs, params

4255 5054 7509

FC

𝐶𝑖𝑛 ,𝐶𝑜𝑢𝑡

FLOPs, params

2000 3700 7065

maxpool 𝐻𝑊 ,𝐶𝑖𝑛 , 𝐾 , 𝑆 1200 1366 1264

avgpool 𝐻𝑊 ,𝐶𝑖𝑛 , 𝐾 , 𝑆 2575 1523 2179

SE 𝐻𝑊 ,𝐶𝑖𝑛 , ratio 2000 2000 2000

hswish 𝐻𝑊 ,𝐶𝑖𝑛 1567 1567 1533

channelshuffle 𝐻𝑊 ,𝐶𝑖𝑛 1000 - 1000

bn++relu 𝐻𝑊 ,𝐶𝑖𝑛 2307 2000 -

add++relu 𝐻𝑊 ,𝐶𝑖𝑛 2000 2000 2262

concat

𝐻𝑊 ,𝐶𝑖𝑛1,𝐶𝑖𝑛2,

𝐶𝑖𝑛3,𝐶𝑖𝑛4
7674 8513 -

Table 6: Main kernels, features and valid data.

Prior possibility distribution 𝑃 . It describes the boundary and

the possibility of each data to sample. To compute it, we collect

the configurations from 24 state-of-the-art CNN models and get

the possibility distribution of each kernel dimension. We sample

𝑁 data from the distributions as the initial data and measure the

latency. In our experiment, we set 𝑁 to 10,000 for Conv, 5,000 for

DWConv, and 2,000 for other kernels.

Test set 𝑇𝐷 . It’s crucial to construct the Test set as it evaluates the

performance of sampled data and predictor. Since the sample size of

the input 𝐻𝑊 , kernel size 𝐾 , and stride 𝑆 are small, we generate all

the combinations of (𝐻𝑊 , 𝐾 , 𝑆) in Table 5. For𝐶𝑖𝑛 and𝐶𝑜𝑢𝑡 , we set

the numbers that appeared in our collected model zoo. Specifically,

the initial set contains 2,800 and 500 points for Conv and DWConv,

respectively. To avoid overfitting, we expand 20% of newly sampled

data into the test set in each iteration.

Fine-grained sampling around inaccurate data. After evaluat-
ing the predictor in each iteration, we pick out the data with large

errors and perform fine-grained sampling. For each data, we fix all

the other dimensions except the channel number 𝐶𝑜 . We random

sample 𝑀 data from [0.4 × 𝐶𝑜 , 1.2 × 𝐶𝑜]. For example, for Conv

with (56, 3, 1, 24, 64), we fix the𝐻𝑊 , 𝐾 , 𝑆 dimension, and sample𝑀

new𝐶𝑖𝑛 ,𝐶𝑜𝑢𝑡 from [9, 28] and [25, 76], respectively. We set𝑀 = 10

in our experiment.

5.3 Kernel and Model Latency Prediction
Predict kernel latency. To learn the non-linearity observed in figs. 7
and 8, we use the Random Forests Regression [21]. Random Forests

is ensemble decision tree-based and commonly reported as one of

the most accurate learning algorithms. Some works [10] adopt the

XGBoost [8]. While XGBoost has many hyper-parameters, Random

Forests is much easier to tune for high performance. Table 6 lists

out the prediction features and the number of collected data for

building the latency predictor. For each kernel, we train and save

the predictor for online model latency prediction.

Predict model latency. Finally, we estimate the model latency by

the summation of all kernels’ predicted latency shown in Equation 2.

Device Processor Framework

CPU Pixel4 CortexA76 CPU TFLite v2.1

GPU Xiaomi Mi9 Adreno 640 GPU TFLite v2.1

VPU Intel NCS2 MyriadX VPU OpenVINO2019R2[17]

Table 7: Evaluated edge devices.

𝑓𝑜 is the ML predictor of kernel 𝑜 , and 𝑥𝑜 is the extracted features.

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (𝑚) =
∑
𝑜∈𝑚

𝑓𝑜 (𝑥𝑜) (2)

6 NN-METER IMPLEMENTATION
The entire nn-Meter consists of 18,093 lines of Python code (loc)-

Test cases: 2,025 loc, Adaptive data sampling and kernel latency

predictors: 8,052 loc,Model latency prediction: 1,291 loc, Benchmark

dataset: 2,630 loc, Latency measurement: 4,095 loc.

Latencymeasurement. nn-Meter currently supports threewidely-

used edge devices, as shown in Table 7. Different from the mobile

CPU, mobile GPU, the Intel NCS2 VPU is a dedicated AI accelerator.

We build an automated measurement platform to measure la-

tency. Given amodel/kernel configuration, we generate the graph in

both the Tensorflow protobuf and tflite format, which are generally

supported by edge inference frameworks. We send the target model

to the measurement platform and collect the returned inference

latency. To measure the latency on the CPU, we set CPU frequency

to the highest 2.42GHz. The latency on the CPU is measured by

the TFLite benchmark tool. Since TFLite currently doesn’t support

operator-level profiling for GPU, we implement an operator pro-

filer in TFLite for GPU backend. For VPU latency measurement,

we convert the protobuf format into OpenVINO IR, and measure

the latency by the OpenVINO
TM

toolkit. The latency number is the

average of 50 inference runs.

Kernel detection. The test cases of nn-Meter cover all possible

two-operator combinations for each of the three devices. The num-

bers of CNN operators are 26 (CPU), 21 (GPU), and 27 (VPU). The

detected fusion rules are 668 (CPU), 434 (GPU), and 720 (VPU) re-

spectively. The total found kernels from our dataset are 22 (CPU), 26

(GPU), and 22 (VPU). More kernels are found on the GPU because

more fusion rules are supported by the TFLite GPU backend. For

example, there is a Conv++bn++add++add kernel found for the GPU

since the fusion of these operators is all supported. By comparison,

the fusion rules supported by the CPU and VPU are limited to Conv,

bn, and relu operators, resulting in less kernels (also refer to Table 4

for the real model example). The detected fusion rules and found

kernels are the same as the framework reported results on our CPU

and GPU backends. The VPU backend is not open source, and thus

cannot directly verify the rules or kernels. However, as Section 7.3

will show, the prediction accuracy on the VPU based on the kernels

are much higher (83.4% vs 8.5%) than operator-based prediction.

Therefore, the fusion detection and kernel search algorithm are

also effective on the black-box VPU.

Latency prediction. In our experiment, we observe the latency

difference between Conv and its fused operators (e.g., Conv and

relu/relu6, bn, add) is negligible (same as DWConv). For example,

the latency of Conv, Conv++bn, Conv++bn++relu with configuration (56,
3, 1, 32, 32) is 0.404ms, 0.404ms, 0,405ms on the GPU, respectively.

88

nn-Meter MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA

(a) CPU (b) GPU (c) VPU

Figure 9: Compared to baseline predictors, nn-Meter achieves much higher ±10% accuracy on unseen models.

Therefore, for Conv and DWConv fused operators, we only build

predictor for Conv++bn++relu and DWConv++bn++relu. To collect the

data for regression, we manually set the error thresholds and run

the adaptive data sampling. We split the collected data (Table 6) into

train, validation, and test by 7:1:2, where we use the validation data

for hyper-parameter tuning. The hyper-parameters are tuned by

the popular NNI [26]. Table 9 lists out main kernels’ performance.

7 EVALUATION
7.1 Experiment Setup
We evaluate nn-Meter on the benchmark dataset (Table 2) for CPU,

GPU, and VPU (Table 7).

Comparison baselines.We implement 3 baselines for comparison:

(1) FLOPs, (2) FLOPs+MAC, (3) BRP-NAS. Baseline (1) and (2) are

the widely used latency predictors. Baseline (3) is the latency pre-

dictor in BRP-NAS, one of the state-of-the-art model-graph based

prediction by GCN on the NASBench201 dataset. For baselines (1)

and (2), we use the FLOPs and memory access cost
6
(i.e., MAC) to

estimate model latency. We train the predictors by linear regression.

For baseline (3), we directly run the BRP-NAS source code [2]. Since

BRP-NAS currently implements for cell-based models, it can not

directly apply to the non-cell-based models in our dataset. Thus,

we modify the graph representation as follows.

The GCN in BRP-NAS takes as input a feature description matrix

and a description of the graph structure as an adjacency matrix.

BRP-NAS encodes the cell of NASBench201 model for representa-

tion. The GCN input is a 9×6 feature matrix and a 9×9 adjacent

matrix. However, for the non-cell-based models in our dataset, we

should encode the complete model graph. Therefore, we encode

all the kernel nodes in a model graph. Besides, we also encode the

5-dimension configuration as the node attributes. Finally, the graph

representations are larger than the BRP-NAS. Specifically, the NAS-

Bench201 models representation are a 133×22 feature matrix and a

133×133 adjacent matrix.

Metrics. We evaluate the prediction performance by the Root Mean

Square Error (RMSE) and the relative Root Mean Square Percentage

Error (RMSPE), that are the standard metrics in regression. Besides,

we report the ±5% and ±10% accuracy [13], that are the percentage

of models with predicted latency within the corresponding error

6
the size of all feature maps and weights during the inference

bound relative to the measured latency. In this paper, ±10% error

boundary is the maximum acceptable prediction error. We use ±10%
accuracy as the default metric. Smaller RMSE/RMSPE and larger

±5%/±10% accuracy suggest better performance.

7.2 End-to-End Prediction Evaluation
7.2.1 Comparison with Baselines on Unseen Models. In real-world

scenarios, a usable predictor must be able to predict unseen models

(i.e., a new model). As introduced, nn-Meter requires no model-

level data for building the predictors, and can make predictions on

models it has not seen before. To demonstrate it, we design a k-fold

cross-validation experiment as follows.

Setting. We select AlexNets, VGGs, MobileNetv1s, MobileNetv2s,

and NASBench201 for the evaluation. For each model variant, we

take it as the testing set (e.g., 2,000 AlexNets), and the remaining 4

model variants (e.g., 8,000 models of VGGs, MobileNetv1s/v2s and

NASBench201) as the training set to train the baselines. nn-Meter

predicts model latency via the predicted latency sum of all kernels,

it requires no model-level training data.

Results. Fig. 9 shows the prediction accuracy achieved by different

predictors. Compared with the baselines, nn-Meter is the only ap-

proach that consistently achieves accurate predictions on various

devices. None of the baselines can achieve comparable performance

for unseen models on any device. Specifically, on average, nn-Meter

achieves 89.2% accuracy, significantly better than FLOPs (22.1%),

FLOPs+MAC (17.1%), and BRP-NAS (8.5%) on the three devices.

The FLOPs/FLOPs+MAC predictors achieve better accuracy on the

CPU compared to the VPU and GPU. This is because on these ac-

celerators, operator fusion plays a more important role on latency

reduction compared to the CPU due to the more serious memory

wall issue. However, FLOPs/FLOPs+MAC ignores operator fusion

impact. For the BRP-NAS baseline, the performance is consistently

poor on three devices. As discussed in Section 2.1, the reason is

the model graph differences between training and testing set. GCN

learns the representation of model graphs. Although the five model

variants have largely overlapped operator types, the operator con-

figurations, edges, and model latency ranges are different.

To further demonstrate the effectiveness of nn-Meter on unseen

models, we calculate the kernel configuration overlaps between

sampled data and our benchmark dataset. A low ratio indicates

a high generalization ability of kernel predictors. Results show

89

MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA L. Zhang et al.

Model variants

Mobile CPU Mobile GPU Intel VPU

RMSE RMSPE ±5% ±10% RMSE RMSPE ±5% ±10% RMSE RMSPE ±5% ±10%
(ms) (%) Acc. Acc. (ms) (%) Acc. Acc. (ms) (%) Acc. Acc.

AlexNets 4.02 3.90 81.0% 98.6% 0.93 5.32 72.0% 94.0% 1.17 10.74 23.4% 60.9%

VGGs 185.71 4.84 66.1% 98.2% 12.74 2.97 91.8% 99.8% 85.35 22.25 27.1% 50.6%

DenseNets 7.10 2.76 93.1% 99.9% 1.99 4.52 68.55% 99.9% 2.83 5.89 75.6% 86.3%

GoogleNets 5.69 3.27 85.9% 100% 0.44 1.35 100% 100% 0.94 5.86 39.7% 98.4%

SqueezeNets 7.19 3.59 84.5% 99.9% 1.17 3.85 81.9% 97.9% 1.93 7.08 66.1% 88.5%

ResNets 26.87 4.41 72.3% 98.1% 2.58 3.16 88.8% 99.9% 3.39 7.42 37.9% 84.2%

MobileNetv1s 3.71 4.98 63.8% 97.8% 0.37 2.56 96.9% 100% 1.21 5.90 54.2% 93.3%

MobileNetv2s 3.25 4.84 67.6% 97.7% 0.54 3.93 80.0% 99.0% 1.29 4.26 78.3% 97.6%

MobileNetv3s 2.03 4.34 73.8% 99.0% 0.40 4.02 84.4% 100% 2.47 5.72 47.6% 98.5%

ShuffleNetv2s 2.48 5.01 61.6% 98.3% - - - - 1.91 6.37 45.6% 91.3%

MnasNets 3.19 5.54 50.9% 99.2% 0.25 1.86 100% 100% 1.76 4.34 77.3% 97.7%

ProxylessNass 3.18 3.44 84.6% 100% 0.61 3.28 95.6% 98.9% 1.97 5.05 65.6% 96.9%

NASBench201 0.44 3.51 82.4% 99.9% 0.12 3.80 75.9% 100% 0.90 18.20 19.3% 40.6%

Table 8: End-to-end latency prediction for 26,000 models on mobile CPU, GPU and Intel VPU.

Kernel

CPU GPU VPU

RMSE ±10% RMSE ±10% RMSE ±10%
(ms) Acc. (ms) Acc. (ms) Acc.

Conv++bn++relu 6.24 89.1% 6.77 82.0% 18.74 67.9%

DWConv++bn++relu 0.21 97.4% 0.10 98.7% 0.28 89.4%

FC 0.64 94.3% 0.07 96.2% 0.12 93.9%

maxpool 0.12 89.6% 0.06 97.1% 0.21 89.7%

avgpool 1.94 99.0% 0.01 99.7% 0.26 95.4%

SE 0.45 87.1% 0.39 99.8% 0.44 99.0%

hswish 0.16 98.1% 0.01 100% 0.02 100%

channelshuffle 0.14 99.5% - - 0.35 100%

bn++relu 0.85 80.7% 0.01 100% - -

add++relu 0.10 93.7% 0.003 98.3% 0.02 98.9%

concat 0.09 89.3% 0.42 77.1% - -

Table 9: Performance for main kernel predictors.

that our kernel predictors have seen only 5.9% (CPU), 9.4% (GPU),

5.0%(VPU) configurations in the dataset, but can accurately predict

the remaining unseen ones.

7.2.2 nn-Meter Results and Analysis. We now provide results of

nn-Meter on the full benchmark dataset (in Table 2). We predict

the latency of 26,000 models on each evaluated device. Remarkably,

we achieve 99.0%, and 99.1% prediction accuracy on the mobile

CPU and GPU, respectively. On the Intel VPU, we can predict 83.4%

models within the ±10% error boundary. Table 8 lists out the per-

formance for each model variant on three devices. We can see that

the strong performance (small RMSE and high accuracy) gener-

alizes across various devices, which have vastly different latency

behaviors. Significantly, >95% of all model variants on the CPU

and GPU are with a < 10% prediction error. nn-Meter even reaches

an impressive high ±5% accuracy on the GPU. On the VPU, we no-

tice that nn-Meter achieves relative low accuracy for the AlexNets,

VGGs, and NASBench201.

To better investigate the performance on the VPU, we divide the

dataset into 4 groups by the model measured latency. As shown in

Fig. 10, the relatively large errors are from models with very small

(i.e., NASBench201 and AlexNet models <10 ms) or very large (i.e.,

Figure 10: Prediction errors on theVPU. X-axis label: latency
range/group size percentages of the dataset.

VGG models >100 ms) latency. Fortunately, these models take a

small percentage in our dataset. In a real-world scenario, models

with very small latency are more likely with a lower classification

accuracy, and models with very large latency (i.e., the average

FLOPs of VGGs is 28,422M) are rarely considered for edge devices.

We now perform manual analysis to reason the failure cases on

the VPU. First, model latency is the sum of all kernels’ latencies.

The accumulated kernel prediction errors sensitively impact the

AlexNets and NASBench201, which have low inference latency.

To relax the prediction error boundary to 15%, we can reach 86.0%

accuracy on AlexNets and 73.3% accuracy onNASBench201. Second,

the latency of a single kernel can be significantly different from

that in a complete model. For example, for the Conv++bn++relu with a

large configuration of (28, 7,1, 819, 768), the latency is 628.7 ms for

a single kernel, but becomes 188.6 ms in a VGG model variant. By

comparing the execution graphs of Conv within/without a model,

we found that VPU performs ad-hoc optimizations that merges the

computation of Conv++bn++relu and the next maxpool layer in VGGs.

This only happens for very large Conv++bn++relu. We will further

discuss it in Section 8.

7.3 Microbenchmarks
Kernel-level prediction. As the core component, kernel detector

automatically detects the kernels on each device. The kernel-level

prediction diminishes the latency differences caused by operator

90

nn-Meter MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA

(a) ±5% accuracy (b) ±10% accuracy

Figure 11: Operator-level approach achieves much lower
±5% and ±10% accuracy on three devices.

Device

Random Sampling Adaptive Sampling

RMSE ±10% Acc. RMSE ±10% Acc.

CPU 25.47 ms 21.92% 10.13 ms 71.78%

GPU 1.67 ms 48.70% 1.19 ms 75.34%

VPU 7.87 ms 23.98% 7.58 ms 54.33%

Table 10: Under the same amount of sampled data, we
achieve better performance than random sampling.

fusion. To demonstrate the effectiveness, we build the operator-level

baseline. It predicts the latency of all operators in a model and sums

them as the model latency. Since the latency difference between

Conv++bn++relu and Conv is negligible (same for DWConv++bn++relu
and DWConv), we use the Conv++bn++relu predictor for Conv. We

build extra predictors for relu, bn, and add. The ±10% prediction

accuracy is high, which ranges from 87% to 98%.

We test the operator-level baseline on our dataset. Fig. 11 shows

the ±5% and ±10% accuracy achieved by two different approaches.

On all devices, our kernel-level prediction consistently outperforms

operator-level prediction. We observe that operator-level predic-

tion performs unstably on different devices. For the ±10% accuracy,

it achieves relative high accuracy on the CPU (91.3%) and GPU

(53.7%), but only 8.5% on the VPU. The reason is that these element-

wise operators take very small latency percentages (≈ 0.1%-15%)

of the model on the CPU and GPU, but high latency percentages

(up to 50%) on the VPU. Therefore, the baseline still achieves high

prediction accuracy on the CPU and GPU for the Conv-dominating

models (e.g., VGGs). However, the operator-level prediction does

not work for non-Conv-dominating models. Specifically, it achieves

only 65.7%, 48.2% accuracy on the CPU for MobileNetv2s and NAS-

Bench201, respectively. The performance is worse on the GPU. Only

2.0% MobileNetv2s and 6.5% ProxylessNass are still within the ±10%
error boundary. On the VPU, it has only 8.5% accuracy without

considering the impact of operator fusion.

Adaptive data sampling. We now evaluate the performance of

adaptive data sampling for its two key tasks: sampling efficiency

for Conv and the effectiveness to model prediction. We compare it

with random sampling. For each device, we randomly sample the

same amount of Conv data as ours (as shown in Table 6).

First, we compare the sampling efficiency for Conv by two differ-

ent approaches. Due to the large sample space, the sampled data are

very different. For a fair comparison, we report the performance

on the initial test set that contains 2,800 data (refer to Section 5.2).

Models Adreno640 predictor Adreno630 predictor

(measure on rmse rmspe ±5% ±10% rmse rmspe ±5% ±10%
Adreno630) (ms) (%) Acc. Acc. (ms) (%) Acc. Acc.

AlexNets 8.02 25.40 0.6% 2.3% 0.87 3.61 86.5% 97.9%

VGGs 154.50 24.85 0% 0% 19.47 3.10 89.5% 99.9%

DenseNets 4.44 7.80 18.4% 84.0% 2.41 4.58 67.1% 100%

GoogleNets 6.71 17.03 0% 0% 1.45 3.75 95.8% 100%

SqueezeNets 8.02 19.21 0.4% 3.0% 1.14 3.30 87.3% 100%

ResNets 33.82 21.36 1.3% 11.0% 2.52 2.65 93.4% 100%

MobileNetv1s 0.28 1.92 98.3% 100% 0.23 1.68 99.7% 100%

MobileNetv2s 0.85 5.43 55.6% 97.2% 0.41 3.42 85.7% 99.5%

MobileNetv3s 0.87 8.25 5.2% 87.5% 0.56 6.14 31.5% 99.6%

MnasNets 0.74 5.45 42.2% 99.8% 0.31 2.26 99.9% 100%

ProxylessNass 0.86 4.33 71.5% 100% 0.21 1.11 100% 100%

NASBench201 0.77 14.94 3.2% 17.5% 0.36 6.22 48.1% 90.6%

Table 11: Two different latency predictors for model infer-
ence on the Adreno GPU 630.

Table 10 shows the RMSE and ±10% accuracy. Under the same

sampling budgets, adaptive data sampling achieves much smaller

RMSE and higher accuracy than random sampling. We observe

that random sampling generates lots of large but rarely-considered

Conv (e.g., configuration of (224, 7, 4, 2141, 1876) has a 750MB size).

Then, we compare the model prediction accuracy achieved by

predictors trained with randomly sampled and adaptively sampled

data. We evaluate the performance of the 2,000 AlexNets as they are

Conv-dominating models. Note that we only change the predictors

of Conv and keep others the same. By adopting the Conv predictor

trained with randomly sampled data, the accuracy heavily drops to

5.8%, 32.3%, 0% on the three devices.

7.4 Generalization Performance
In previous sections, we build and test latency predictors for the

three types of hardware (in Table 7), and demonstrate the high pre-

diction accuracy of nn-Meter. We now discuss the generalization

performance for nn-Meter on a new edge platform. The experi-

mental device is a Pixel3XL phone with a mobile Adreno 630 GPU,

which is a lower version than the Adreno 640 GPU in Table 7. We

measure the inference latency of the dataset in TFLite 2.1 on the

Adreno 630 GPU for testing. The evaluation contains two folds.

Firstly, we measure the cross-device generalization performance.

We use the existing latency predictors trained for Adreno 640 GPU

to predict the model latency on the Adreno 630 GPU. As shown in

Table 11, the non-Conv-dominated models (i.e., MobileNet-series,

MnasNets, and ProxylessNass that contain both Conv and DWConv

kernels) can achieve high prediction accuracy. However, the Conv-

dominated model variants (i.e., AlexNets, VGGs, GoogleNets, etc.)

achieve much lower prediction accuracy with > 15% RMSPE. The

reason is that the Conv kernel runs faster on Adreno 640 GPU than

that on Adreno 630 GPU, while the DWConv kernel has a similar

inference latency on the two different versions of Adreno GPUs.

Secondly, we rebuild the latency predictors for the Adreno 630

GPU and use them to predict model latency. The results then be-

come very promising as shown in Table 11. In total, nn-Meter

91

MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA L. Zhang et al.

CPU GPU VPU

total measure time 2.5 𝑑𝑎𝑦𝑠 1 𝑑𝑎𝑦 4.4 𝑑𝑎𝑦𝑠

Table 12: Time cost of nn-Meter.

achieves 99.0% prediction accuracy with the rebuilt latency pre-

dictors on the Adreno 630 GPU. The rebuilt cost is acceptable as

evaluated in the next section.

7.5 System Overhead
Finally, we evaluate the system overhead. As shown in Table 12,

most of the overhead comes from the measurement time. In total,

we take 2.5 days, 1 day, and 4.4 days to measure the latency of

all sampled kernels on a single CPU, GPU, and VPU device, re-

spectively. The measurement cost can be linearly scaled down by

increasing more devices, which indicates it requires low efforts to

build predictors for new device by nn-Meter.

8 DISCUSSION
Prediction for language models. Current edge inference back-
ends mainly support CNN models but not language models. For

example, TFLite does not support BERT-mini [31] inference. There-

fore, nn-Meter is only evaluated on CNN models in this paper. The

technique, however, should also be applicable for language models

since they are also DAGs composed of operators.

Limitations. There might be some ad-hoc optimizations or im-

plementations in the frameworks for certain unknown conditions,

such as specific input size discussed in Section 7.2. For the black-box

backends, it is not feasible to find common rules behind these ad-

hoc optimizations to design test cases for detection yet. However,

these ad-hoc optimizations are rare, and their impact on prediction

accuracy is limited.

For new inference backends and significant updates on available

backends, the predictor building process should be done again to

meet the new implementation. The major cost is the data profiling

shown in Table 12.

There are also some backends which generate different kernel

codes and search for the fastest one for different input size, such

as TVM [9]. nn-Meter could also built predictors for these back-

ends based on the searched kernel implementation. However, these

backends are hardly used on edge platforms, because of the large

time cost for code generation and search (easily takes hours to run

for one configuration). Therefore, nn-Meter has not built predictors

for this kind of backends. We leave it for future work.

Current nn-Meter predictors are built offline and will not be

updated dynamically during the inference phase. It is possible to

integrate more dynamic resource impact in the predictors such as

current CPU utilization. This can also be a future research direction.

Concurrent execution. The design of nn-Meter is based on the

fact that current kernels run sequentially on edge chips (refer to

Section 2.3). For possible future inference where kernels may run

concurrently on heterogeneous edge chips or multi-cores, a po-

tential solution is to extend nn-Meter with a static-analysis phase

to work out the kernel execution plan first. The predicted model

latency will then be the sum of kernel latencies on the longest

sequential path, as well as the synchronization cost. The prediction

accuracy is possibly lower than that for purely sequential run, since

there are more uncertainties introduced by concurrent execution.

Power prediction. It should be straightforward to extend nn-

Meter to predict kernel power or energy by training the predictors

using measured power or energy data. However, it will be difficult

to conduct thermal or heat modeling, since heat dissipation depends

on the external environment which is hard to model.

9 RELATEDWORK
Unaware of runtime implementation. Current CNN design

uses high-level APIs, which are independent of runtime implemen-

tation. Besides, most runtimes are closed source. Therefore, many

CNN latency predictors only rely onCNNmodel features but no con-

sideration of runtime implementation. Some works [15, 22, 23, 30]

simply use FLOPs and MAC of the model as proxies for latency,

or use these as feature inputs of regressors [28] to predict latency.

However, these methods are inaccurate because they neglect the

runtime behaviour difference of various operators. Similar as our pa-

per, NeuralPower [5] and PALEO [27] predict latency for operators

or layers, and sum them up as the model latency. They are inferior

to nn-Meter due to the ignorance of model graph optimizations of

the runtime.

BRP-NAS [13] can learn both the operator latency and graph

optimization by encoding operator type and graph as features to a

GCN prediction model. However, as we have shown, its general-

ization ability is low to new CNN models with diverse number of

operators, and the connection distance it can learn is limited.

Prediction onoperator implementation. Some operator-latency

predictors use machine learning methods to learn latency from low-

level implementations.They either use code features and simple

regression model to predict operator latency [1, 16], or costly DNN

code embedding [19, 25] approach to avoid feature engineering.

TVM [10] uses both approaches to accelerate its code search process.

Its embedding-based latency predictor recursively uses TreeGRU

model to embed a low-level AST into a vector and then map it to

predicted latency using a linear layer. The other predictor uses code

features like memory accesses, data reuse, vectorization, and un-

rolling as inputs to an XGBoost model to predict latency. However,

since most edge DNN runtimes are closed source, it is infeasible to

use these code-based methods.

There are also analytical latency prediction methods generally

used by language compilers (e.g., LLVM-MCA [3] and IACA [18]),

and cycle-accurate hardware simulation (e.g. gem5 [4] and GPGPU-

Sim [20]). These methods require knowledge of the exact mecha-

nisms of the processor, which is also infeasible for black-box edge

AI hardware.

10 CONCLUSION
We propose nn-Meter, a kernel-based prediction system that ac-

curately predicts the latency of DNN models on diverse edge de-

vices. nn-Meter introduces kernel detection that captures the vari-

ous operator-fusion behaviours. By sampling the most beneficial

data, nn-Meter efficiently builds latency predictors for kernels. We

demonstrate the effectiveness of nn-Meter with experiments on a

large dataset and three types of edge devices.

92

nn-Meter MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA

REFERENCES
[1] Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li,

Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Du-

rand, and Jonathan Ragan-Kelley. 2019. Learning to Optimize Halide with Tree

Search and Random Programs. ACM Trans. Graph. 38, 4, Article 121 (July 2019),

12 pages. https://doi.org/10.1145/3306346.3322967

[2] BRP-NAS authors. 2020. Eagle: Efficient and Agile Performance Estimator and

Dataset. https://github.com/thomasccp/eagle.

[3] Andrea Di Biagio. 2018. llvm-mca: a static performance analysis tool.
[4] Nathan L. Binkert, Bradford M. Beckmann, Gabriel Black, Steven K. Reinhardt,

Ali G. Saidi, Arkaprava Basu, Joel Hestness, Derek Hower, Tushar Krishna, So-

mayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib Bin Altaf, Nilay

Vaish, Mark D. Hill, and David A. Wood. 2011. The gem5 simulator. SIGARCH
Comput. Archit. News 39, 2 (2011), 1–7. https://doi.org/10.1145/2024716.2024718

[5] Ermao Cai, Da-Cheng Juan, Dimitrios Stamoulis, and Diana Marculescu. 2017.

NeuralPower: Predict and Deploy Energy-Efficient Convolutional Neural Net-

works. In Proceedings of the Ninth Asian Conference on Machine Learning (Pro-
ceedings of Machine Learning Research). PMLR, 622–637.

[6] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. 2020. Once-

for-all: Train One Network and Specialize it for Efficient Deployment. In Interna-
tional Conference on Learning Representations (ICLR).

[7] Han Cai, Ligeng Zhu, and Song Han. 2019. ProxylessNAS: Direct Neural Ar-

chitecture Search on Target Task and Hardware. In International Conference on
Learning Representations (ICLR).

[8] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting

System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD).

[9] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen

Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,

and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing

Compiler for Deep Learning. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI). USENIX Association, Carlsbad, CA, 578–594.

[10] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, ThierryMoreau, Luis Ceze,

Carlos Guestrin, and Arvind Krishnamurthy. 2018. Learning to Optimize Tensor

Programs (NIPS’18). Curran Associates Inc., Red Hook, NY, USA, 3393–3404.

[11] Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin, Fei Sun, Yanghan Wang,

Marat Dukhan, Yunqing Hu, Yiming Wu, Yangqing Jia, et al. 2019. Chamnet:

Towards efficient network design through platform-aware model adaptation. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
11398–11407.

[12] Xuanyi Dong and Yi Yang. 2020. NAS-Bench-201: Extending the Scope of Re-

producible Neural Architecture Search. In International Conference on Learning
Representations (ICLR).

[13] Lukasz Dudziak, Thomas Chau, Mohamed Abdelfattah, Royson Lee, Hyeji Kim,

and Nicholas Lane. 2020. BRP-NAS: Prediction-based NAS using GCNs. In

Advances in Neural Information Processing Systems (Neurips), H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.), Vol. 33. Curran As-

sociates, Inc., 10480–10490. https://proceedings.neurips.cc/paper/2020/file/

768e78024aa8fdb9b8fe87be86f64745-Paper.pdf

[14] Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compression: Compress-

ing Deep Neural Networks with Pruning, Trained Quantization and Huffman

Coding. In International Conference on Learning Representations (ICLR).
[15] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. 2018. AMC:

AutoML for Model Compression and Acceleration onMobile Devices. In European
Conference on Computer Vision (ECCV).

[16] Ling Huang, Jinzhu Jia, Bin Yu, Byung-Gon Chun, Petros Maniatis, and Mayur

Naik. 2010. Predicting Execution Time of Computer Programs Using Sparse

Polynomial Regression.. In Advances in Neural Information Processing Systems
(NIPS).

[17] Intel. 2019. Deploy High-Performance Deep Learning Inference, Open-

VINO. https://software.intel.com/content/www/us/en/develop/tools/openvino-

toolkit.html.

[18] Gideon Stupp Israel Hirsh. 2019. Intel Architecture Code Analyzer.
[19] Samuel J. Kaufman, Phitchaya Mangpo Phothilimthana, , and Mike Burrows.

2019. Learned TPU Cost Model for XLA Tensor Programs. NeurIPS workshop.

[20] Mahmoud Khairy, Zhesheng Shen, Tor M. Aamodt, and Timothy G. Rogers. 2020.

Accel-Sim: An Extensible Simulation Framework for Validated GPU Modeling. In

47th ACM/IEEE Annual International Symposium on Computer Architecture, ISCA
2020, Valencia, Spain, May 30 - June 3, 2020. IEEE, 473–486. https://doi.org/10.

1109/ISCA45697.2020.00047

[21] Breiman Leo. 2001. Random Forests. In Machine Learning. 5–32.
[22] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. 2017.

Pruning Filters for Efficient ConvNets. In The International Conference on Learning
Representations (ICLR).

[23] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2019. DARTS: Differentiable

Architecture Search. In International Conference on Learning Representations
(ICLR).

[24] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Tim Kwang-Ting Cheng

Xin Yang, and Jian Sun. 2019. MetaPruning: Meta Learning for Automatic Neu-

ral Architecture Channel Pruning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV).

[25] Charith Mendis, Alex Renda, Saman Amarasinghe, and Michael Carbin. 2019.

Ithemal: Accurate, Portable and Fast Basic Block Throughput Estimation using

Deep Neural Networks. In Proceedings of the 36th International Conference on
Machine Learning (ICML). 4505–4515.

[26] Microsoft. 2019. Neural Network Intelligence. https://github.com/microsoft/nni.

[27] HangQi, Evan R. Sparks, and Ameet Talwalkar. 2017. Paleo: A PerformanceModel

for DeepNeural Networks. In International Conference on Learning Representations
(ICLR).

[28] Stefan Reif, Judith Hemp Benedict Herzog, Timo Hönig, and Wolfgang Schröder-

Preikschat. 2020. Precious: Resource-Demand Estimation for Embedded Neural

Network Accelerators. In First International Workshop on Benchmarking Machine
Learning Workloads on Emerging Hardware.

[29] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew

Howard, and Quoc V Le. 2019. Mnasnet: Platform-aware neural architecture

search for mobile. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2820–2828.

[30] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew

Howard, and Quoc V Le. 2019. Mnasnet: Platform-aware neural architecture

search for mobile. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[31] Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Well-

Read Students Learn Better: On the Importance of Pre-training Compact Models.

arXiv:1908.08962 [cs.CL]

[32] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming

Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. 2019. Fbnet:

Hardware-aware efficient convnet design via differentiable neural architecture

search. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 10734–10742.

[33] Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix Xiaozhu Lin, Yunxin Liu, and

Xuanzhe Liu. 2019. A First Look at Deep Learning Apps on Smartphones. In The
World Wide Web Conference (WWW).

[34] Li Lyna Zhang, Yuqing Yang, Yuhang Jiang, Wenwu Zhu, and Yunxin Liu. 2020.

Fast Hardware-Aware Neural Architecture Search. In Proceedings of the IEEE
Computer Vision and Pattern Recognition Workshops (CVPRW).

[35] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2018. Shufflenet: An ex-

tremely efficient convolutional neural network for mobile devices. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

93

https://doi.org/10.1145/3306346.3322967
https://github.com/thomasccp/eagle
https://doi.org/10.1145/2024716.2024718
https://proceedings.neurips.cc/paper/2020/file/768e78024aa8fdb9b8fe87be86f64745-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/768e78024aa8fdb9b8fe87be86f64745-Paper.pdf
https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
https://doi.org/10.1109/ISCA45697.2020.00047
https://doi.org/10.1109/ISCA45697.2020.00047
https://github.com/microsoft/nni
https://arxiv.org/abs/1908.08962

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 CNN Model Characteristics
	2.2 Optimizations of Inference Frameworks
	2.3 Rationale for Kernel-level Prediction

	3 nn-Meter Design
	4 Kernel Detection
	4.1 Test Case Design
	4.2 Find All Kernels of a Model

	5 Latency Predictor
	5.1 Kernel Characterization
	5.2 Adaptive Data Sampling
	5.3 Kernel and Model Latency Prediction

	6 nn-Meter Implementation
	7 Evaluation
	7.1 Experiment Setup
	7.2 End-to-End Prediction Evaluation
	7.3 Microbenchmarks
	7.4 Generalization Performance
	7.5 System Overhead

	8 Discussion
	9 Related Work
	10 Conclusion
	References

