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Abstract

Ensemble-based debiasing methods have been shown effective in mitigating the
reliance of classifiers on specific dataset bias, by exploiting the output of a bias-
only model to adjust the learning target. In this paper, we focus on the bias-only
model in these ensemble-based methods, which plays an important role but has not
gained much attention in the existing literature. Theoretically, we prove that the
debiasing performance can be damaged by inaccurate uncertainty estimations of
the bias-only model. Empirically, we show that existing bias-only models fall short
in producing accurate uncertainty estimations. Motivated by these findings, we
propose to conduct calibration on the bias-only model, thus achieving a three-stage
ensemble-based debiasing framework, including bias modeling, model calibrating,
and debiasing. Experimental results on NLI and fact verification tasks show that our
proposed three-stage debiasing framework consistently outperforms the traditional
two-stage one in out-of-distribution accuracy.

1 Introduction

Machine learning models have achieved remarkable performance on natural language understand-
ing [13; 9; 33] and computer vision [19; 20]. However, observations have shown that these models
have difficulties in generalizing well in out-of-distribution settings [35; 46; 3; 14], which limits their
applications to real-world scenarios. A major cause of this failure is the reliance of the model on
specific dataset bias [39]. For instance, McCoy et al. [28] have shown that sentence pairs with high
word overlaps in MNLI are easy to be classified as the label ‘entailment’, even if they have different
relations.

A growing body of literature recognizes debiasing as an important direction in machine learning
and natural language processing [44; 4; 5; 40]. Within these works, ensemble-based debiasing
(EBD) methods [18; 27; 10; 45; 7] have caused considerable interest within the community, as shown
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promising improvements on the out-of-distribution performance. EBD methods, e.g., PoE [10],
DRiFt [18], and Inverse-Reweight [45], usually adopt a two-stage framework. Firstly, a biased
predictor is trained based on the bias features only, namely the bias-only model. Its output is then
utilized to adjust the learning target of the main model by using different ensembling strategies.
Previous works are mainly limited to designing different ensembling strategies, without considering
the bias-only model, which clearly plays an essential role in the whole process.

In this paper, we focus on investigating the bias-only model in the EBD methods. We theoretically
reveal that the quality of the predictive uncertainty estimation given by the bias-only model is crucial
for the debiasing performance of EBD methods. Specifically, we prove that the out-of-distribution
accuracy of the debiased model is monotonically decreasing with the calibration error of the bias-only
model when such error exceeds a threshold4. Moreover, by theoretically analyzing the decline of
in-distribution performance caused by debiasing, we show the existence of the case when uncertainty
calibration can also mitigate such a side-effect. Empirically, we show that bias-only models employed
by existing methods on both natural language inference and fact verification tasks fail to produce
accurate uncertainty estimations. These findings indicate the critical role of the calibration property
of current bias-only models for further improvement of EBD methods.

Motivated by the theoretical analysis and empirical study, we introduce an additional calibration
stage into the previous EBD methods. In this stage, the bias-only model is calibrated with model-
agnostic calibration methods to obtain more accurate predictive uncertainty estimation. Specifically,
two typical calibration methods are used in this paper, i.e. temperature scaling [15] and Dirichlet
calibration [24]. After that, the calibrated bias-only model is used to train the main model with
off-the-shelf ensembling strategies. In this way, we extend the traditional two-stage EBD framework
to a three-stage one, including bias Modeling, model Calibrating, and Debiasing, named MoCaD for
short.

To demonstrate the effectiveness of our proposed framework, we conduct experiments on four
challenging benchmarks for two NLU tasks, i.e. natural language inference and fact verification.
Experimental results show that our framework significantly improves the out-of-distribution perfor-
mance, as compared with the traditional two-stage one. Moreover, our theoretical results are well
verified by the empirical observations in real scenarios.

Our main contributions can be summarized as the following three folds.

• We explore, both theoretically and empirically, the effect of the bias-only model in the EBD
methods. Consequently, a critical problem is revealed: existing bias-only models are poorly
calibrated, which will hurt the debiasing performance.

• We propose a model-agnostic three-stage EBD framework to tackle the above problem.
• We conduct extensive experiments on four challenging datasets for two different tasks,

and experimental results show the superiority of our proposed framework as against the
traditional two-stage one.

2 Related Work

Dataset Bias. Various biases have been found in different NLU benchmarks. For example, models
with partial input can perform much better than majority-class baselines in NLI and fact verification
datasets [16; 32; 35]. Many multi-hop questions can be solved by just using single-hop models in the
recent multi-hop QA datasets [29; 8]. Similar phenomena have been observed in many other tasks,
such as reading comprehension [23] and visual question-answering [1]. Many models have used
such superficial cues to achieve remarkable performance instead of capturing the underlying intrinsic
principles in these biased datasets, leading to poor generalization on out-of-distribution datasets,
when the relation of bias features and labels are changed [28; 35; 26].

Ensemble-based debiasing (EBD) methods. EBD methods are a kind of model-agnostic debias-
ing method to reduce the reliance of models on specific dataset bias. In these methods, a bias-only

4This condition is more general when the ground truth labeling based on the signal features has low certainty.
Such cases exist in natural language understanding (NLU) tasks, where the ground-truth label for a sample is not
unique but inherently forms a distribution, as shown by recent empirical studies [31; 30]. That is why we focus
our empirical study on NLU tasks.
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model is used to assist the debiasing training of the main model. Most EBD methods, e.g., PoE [10],
DRiFt [18], and Inverse-Reweight [45], can be formalized as a two-stage framework. It is commonly
assumed that the dataset bias is known a-priori. In the first stage, the bias-only model is trained to
capture the dataset bias by leveraging the pre-defined bias features. Then the bias-only model is used
to adjust the learning target of the main model with different ensembling strategies. Recently, some
works start to improve the EBD methods by exploring the bias-only models. For example, Utama et al.
[41], Sanh et al. [34], and Clark et al. [11] focus on relaxing the basic assumption of many EBD meth-
ods, i.e., the dataset bias is known a-priori. They exploit different prior knowledge to obtain bias-only
models, e.g., models that shallow [41] or with limited capacity [34; 11] are considered to be biased.
Unlike these works, we theoretically study the essential effect of the bias-only model on the final
debiasing performance and show how to improve it in the algorithm design process. Please note that
some works [27; 11] have been proposed to jointly learn the bias-only model and the debiased main
model in an end-to-end manner. However, Since it is difficult to quantify the impact of the bias-only
model in this scheme, we mainly focus on the typical two-stage methods [10; 18; 45; 41; 34].

3 Formalization of EBD Methods

In this section, we formalize EBD methods with an introduction to some related notations. Consider
a general classification task, where the target is to map an input value x ∈ X of an input random
variable X to a target label y ∈ Y of a target random variable Y . We denote features of x that
have invariant relations with the label as signal xs, e.g., the sentiment words in sentiment analysis.
Conversely, features whose correlation with label Y is spurious and prone to change in the out-
of-distribution setting are denoted as bias xb, e.g., the length of input sentences in the NLU tasks.
The corresponding random variables are respectively denoted as XS and XB . Now suppose that
on a training dataset D where (X,Y ) ∼ PD(X × Y), XB and Y are spuriously correlated. The
goal of debiasing is to learn a classifier that models PD(Y |XS) with invariant out-of-distribution
performance.

The following decomposition forms the theoretical basis for EBD methods: for ∀x ∈ X , with its
corresponding features XB = xb, XS = xs,

PD(Y |X = x) ∝ PD(Y |XB = xb)PD(Y |XS = xs)
1

PD(Y )
, (1)

where PD(Y |XB=xb) is the conditional probability distribution of Y given the value of bias features
XB , PD(Y |XS = xs) represents the true principle we would like to learn, and PD(Y |X = x) is the
conditional distribution of Y given all features, which is usually approximated by directly applying
statistical machine learning methods on the training data. This decomposition can be deduced under
the constraint that XS ⊥⊥ XB |Y , as shown in [10; 18; 11]. We further prove that it also holds with
the assumptions in [45] (See the appendix). The theoretical analysis in this paper is conducted based
on the same constraint as in [10; 18; 11].

From this decomposition, the true principle PD(Y |XS) can be achieved by adjusting the learning
target with PD(Y |XB). This is exactly the basic idea of EBD methods.

Most EBD methods belong to a two-stage framework. In the first stage, a bias-only model fB : X →
R|Y| is trained to approximate PD(Y |XB). Then it is employed to adjust the learning target in a
direct or indirect way. Direct methods such as Inverse-Reweight [45] reweight the distribution by
the inverse of the probability induced by the bias-only model to approximate the true principle. The
objective function of the main model fM : X → R|Y| becomes:

min
fM

EX,Y∼PD [
1

pbY (X)
Lc(Y,pm(X))], (2)

where pb(X) = {pb1(X), pb2(X), . . . , pb|Y|(X)}, pm(X) = {pm1 (X), pm2 (X), . . . , pm|Y|(X)} denote
the uncertainty estimations, i.e. the prediction probabilities given by fB and fM respectively. Lc
represents the cross-entropy loss function. On the other hand, indirect methods usually utilize the
output of the bias-only model to adjust the loss function of the main model, and the learning target
becomes:

min
fM

EX,Y∼PD [Lc(Y,m(qb(X) · qm(X))], (3)
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where m is the normalization function, and qb(X),qm(X) are vectors in proportion to pb(X) and
pm(X) respectively. Specifically, PoE [10; 41] directly uses the probability output, DRiFt [18] and
Sanh et al. [34] utilizes exponential of the logits output. In Learned-Mixin [10], a variant of PoE,
qb(X) is changed to (pb(X))g(X), where g(X) is a trainable gate function.

For both direct and indirect methods, by the property of the cross-entropy loss [17], the optimal
main model f∗M satisfies pm∗ ∝ PD(Y |X)/pb. Therefore, we have pm∗ ∝ PD(Y |XS) when
pb ∝ PD(Y |XB), which guarantees the effectiveness of the existing EBD methods. Please note that
Learned-Mixin does not satisfy this property due to the trainable gate function.

4 Analysis of the Bias-only Model

Bias-only models are critical to EBD methods, since their outputs are used to help recover the unbiased
distribution. However, far too little attention has been paid to them in previous research. In this
section, we theoretically quantify the effect of bias-only outputs on the final debiasing performance
and empirically show the weakness of existing bias-only models.

4.1 Theoretical Analysis

According to the discussion in Section 3, the optimal main model f∗M induces the following condi-
tional probability:

PD,f∗M (Y = i|X) :=
PD(Y = i|X)/pbi (X)∑
j∈Y PD(Y =j|X)/pbj(X)

. (4)

For arbitrary x ∈ X , we define

Y (x) := argmaxi∈Y PD(Y = i|XS = xs), Ỹ (x) := argmaxi∈Y PD,f∗M (Y = i|X = x). (5)

Here Y (x) stands for the predicted label given by the intrinsic principle, and Ỹ (x) is the label
prediction given by the debiased main model. With these notations, the debiasing performance can be
defined as EX∼PD(X)(Ỹ (X) = Y (X)). As the major factor related to the bias-only model is pbi (X),
i.e. the uncertainty estimation, in the concerned quantities Ỹ (X), we investigate the effect of the
bias-only model on the debiasing performance from this aspect.

Without loss of generality, we consider the binary classification problem with Y = {0, 1} and
balanced label distribution. To divide and conquer, we conduct the theoretical analysis on a set
of samples, where the bias-only model generates the same uncertainty estimation, i.e. SfB (l) :=
{x|pb0(x) = l},∀l ∈ [0, 1]. Specifically, the quality of the uncertainty estimation of the bias-only
model on SfB (l) can be measured by the calibration error defined as |l − PD(Y = 0|SfB (l))|. The
debiasing performance on SfB (l) is defined as PD({x ∈ SfB (l)|Ỹ (x) = Y (x)}), i.e. the probability
of the subset of SfB (l) on which the main model gives the same prediction as the intrinsic principle.

The following theorem formalizes a precise result. Specifically, the debiasing performance is a
monotonically decreasing function of the calibration error when it exceeds a deviation threshold
δ(l0, ε, α). Here α := minXS maxi∈{0,1} PD(Y = i|XS) denotes the global certainty level of the
true principle PD(Y |XS).
Theorem 1. For any l ∈ [0, 1], assume that ∃l0 s.t. PD(Y = 0|XB)∈(l0 − ε, l0 + ε) when X
takes values in SfB (l). If the calibration error |l − PD(Y = 0|SfB (l))| ≥ δ(l0, ε, α) > 0, the
debiasing performance PD({x ∈ SfB (l)|Ỹ (x) = Y (x)}) declines as |l − PD(Y = 0|SfB (l))|
increases, where δ(l0, ε, α) is a constant dependent with l0, ε and α. When α < 1

2 + ε
2l0(1−l0)+2ε2 ,

0 ≤ δ(l0, ε, α) < 2ε, where 2ε ≤ ε
2l0(1−l0)+2ε2 <

1
2 . Otherwise C < δ(l0, ε, α) < 2ε + C, where

0 < C := l0 − ε− l0+ε
(l0+ε)+(1−l0−ε) α

1−α
, which increases as α increases.

The threshold in this theorem depends on latent constants l0, ε, and α. Here l0 and ε define the range
of PD(Y = 0|XB) on SfB (l). As these constants are related to the posterior characteristics of fB ,
we verify the generality of such condition by empirical facts in Section 6. Note that the deviation
threshold decreases as the certainty level α decreases. That means the same calibration error is more
likely to exceed the threshold under smaller α, resulting in a more considerable decrease in debiasing

4



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Observed Class Portion
Gap (ECE=9.83)

Predict Probability

(a) MNLI

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Observed Class Portion
Gap (ECE=7.12)

Predict Probability

(b) FEVER

Figure 1: Reliability diagrams of the bias-only models on MNLI and FEVER. The x-axis is the
predictive probability of the bias-only model, and the y-axis is the frequency. The wide blue bars
show the weighted average of the observed class portion to all classes within each bin, and the
narrow red bars show the gap between the observed class portion and the predictive probability of the
bias-only model.

performance. As a result, the condition in Theorem 1 is more general and significant when the true
principle PD(Y |XS) has low certainty, for example, in the NLU tasks as supported by empirical
evidence in [31; 30].

We also theoretically analyze the effect of the bias-only model on the in-distribution performance,
which is defined as EX∼PD(X)(Ỹ (X) = Ŷ (X)), where Ŷ (x) := argmaxi∈Y PD(Y = i|X = x)
denotes the label given by the ideal predictor on D. The result is shown in the following theorem.

Theorem 2. For any X , Ỹ (X) 6= Ŷ (X) if and only if pb
Ŷ (x)

(x) > PD(Y = Ŷ (x)|X = x).

Theorem 2 gives a possible explanation for the decrease of in-distribution performance of EBD
debiased models: the in-distribution error occurs when the predictive uncertainty estimation of the
bias-only model on Ŷ (x) is higher than the conditional probability of Ŷ (x). That indicates that
the in-distribution error is non-decreasing as the range of the uncertainty estimation of bias-only
models increases. As an important case, when the bias-only model is over-confident [15], decreasing
its calibration error can improve both the in-distribution and out-of-distribution performance of the
debiased model according to the two theorems.

To sum up, our theoretical study shows that both debiasing and in-distribution performances of the
EBD methods are affected by the uncertainty estimation of the bias-only models. Please note that
both Theorem 1 and 2 can be generalized to multi-class scenarios, with a more complex form. For
simplicity, we only discuss the binary class case.

4.2 Empirical Analysis

According to some recent machine learning studies, the uncertainty estimations of many widely
used machine learning classifiers are not reliable [25; 15; 38; 42]. This indicates that the existing
bias-only classifiers may fail to produce a good uncertainty estimation, which can hurt the debiasing
performance, as demonstrated by our theoretical results.

To quantify the effect, we further conduct an empirical study to demonstrate the quality of the existing
bias-only models with respect to the uncertainty estimation. Specifically, we experiment on two
typical public datasets, MNLI and FEVER. Their experimental settings and detailed analysis can be
found in Section 6.1. For MNLI, we consider the syntactic bias [28] and use hand-crafted features to
train a bias-only model, the same as in [10]. For FEVER, we consider the claim-only bias [35] and
train a claim-only model as the bias-only model, as in [40]. After that, we use the classwise reliability
diagram [24] to check its calibration error based on data binning. We adopt the classwise expected
calibration error [24] as a measure to quantify the quality of the uncertainty estimation, denoted as
ECE for short, with its lower value indicates better-calibrated uncertainty estimation.
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Now we introduce our experimental results. The classwise reliability diagrams on MNLI and
FEVER training sets are plotted in Figure 1(a) and Figure 1(b), respectively. For perfectly calibrated
predictions, the curve in a reliability diagram should be as close as possible to the diagonal. Therefore,
the deviation from the diagonal represents the calibration error. From the results, we can see that
existing bias-only models suffer from inaccurate uncertainty estimation problems on both datasets.

5 The MoCaD Framework

To overcome the unreliable predictive uncertainty problem, we introduce a calibration operation to
the bias-only model, achieving a Modeling, Calibrating and Debiasing framework, named MoCaD
for short. Our framework consists of three stages. Firstly, we train a bias-only model to model
PD(Y |XB). Secondly, we use the model-agnostic calibration methods to improve the calibration
error of the bias-only model. The calibrated bias-only model is finally employed to conduct the
debiasing process through the existing ensembling strategies.

5.1 Bias Modeling

In the first stage, we train a bias-only model to approximate PD(Y |XB), similar to previous works [10;
18]. When the dataset bias is identified, i.e. bias featuresXB are known a-priori [10; 18], the bias-only
model can be obtained by only using the pre-defined XB to predict label y with cross-entropy loss.
For example, in NLI, many specific linguistic phenomena in hypothesis sentences such as negation
are highly correlated with certain inference classes [32]. In this case, hypothesis sentences are used
as inputs to train an NLI model as a bias-only model. When the dataset bias is unknown, a ‘shallow’
model or a ‘weak’ model can be built as the bias-only model, as in [41; 34].

5.2 Model Calibrating

We propose to utilize model-agnostic calibration methods to improve the calibration error of the bias-
only models. Specifically, two typical calibration methods, temperature scaling [15] and Dirichlet
calibrator [24], are used in this paper. The calibrated bias-only model is denoted as f̃B .

Temperature scaling is a simple-but-effective calibration method. It learns a single scalar parameter
‘temperature’ which is applied to the last softmax layer. Specifically, denote zb(X) as the logit output
of the bias-only model on sample (X,Y ), abbreviated for zb, temperature scaling will correct the
output as follows: p̃b = softmax(zb/T ), where T is the temperature, which is learned with the
cross-entropy loss.

Dirichlet calibrator is derived from the Dirichlet distribution likelihood. The transformed probability
is computed as p̃b = softmax(W lnpb + b′), where W and b′ stand for the linear transformation
matrix and intercept term, which are optimized by the cross-entropy loss equipped with ODIR
(Off-Diagonal and Intercept Regularisation) to prevent over-fitting [24].

Please note that temperature scaling does not change the predicted label because the maximum of the
softmax function remains unchanged. In other words, it only changes the uncertainty estimation and
maintains the model’s accuracy. Unlike temperature scaling, the Dirichlet calibrator can change the
prediction accuracy. Empirically, we observed that the Dirichlet calibrator improves the accuracy
of all bias-only models in our experiments (See the Appendix for details). In both methods, the
calibration error is expected to be reduced by learning the parameters with the cross-entropy loss.

5.3 Debiasing

The final step is to train the main model fD with the calibrated bias-only model f̃B . Specifically, f̃B
is applied with the existing ensembling strategies to make the main model fD approximate the true
principle PD(Y |XS), by adjusting the learning target of the main model, as described in Section 3.
The design of the main model is highly dependent on the concerned task, as indicated by previous
works. For example, a BERT-based classifier is usually used in NLI [18], and a BottomUp-TopDown
VQA model is usually adopted in VQA [10].
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6 Experiments

In this section, we conduct experiments on different real-world datasets to answer two questions: (1)
whether our proposed MoCaD framework improves the debiasing performance of the EBD methods;
(2) whether the experimental results are consistent with the theoretical findings.

6.1 Experimental Settings

We describe our experimental settings, including datasets, models and some training details. More
details are provided in the Appendix.

Datasets and bias-only models. We conduct experiments on both fact verification and natural
language inference, which are commonly used tasks in debiasing [10; 40; 41]. We follow these works
to choose the datasets and design the bias-only models.

Fact verification requires models to validate a claim in the context of evidence. For this task, we use
the training dataset provided by the FEVER challenge [37]. The processing and split of the dataset
into training/development set are conducted following Schuster et al. [35]5. It has been shown that
FEVER has the claim-only bias, where claim sentences often contain words highly indicative of the
target label [35]. So the bias-only model is trained to predict labels by only using claim sentences.
Finally, Fever-Symmetric datasets [35] (both version 1 and 2) are used as the test sets for evaluation.

Natural language inference aims to infer the relationship between premise and hypothesis. Recent
studies have shown that various biases exist in the widely used NLI datasets [32; 16; 28]. In this
paper, we conduct our experiments on MNLI [43] and consider both known bias and unknown bias.
For known bias, firstly, we consider the syntactic bias, e.g. the lexical overlap between premise and
hypothesis sentences is strongly correlated with the entailment label [28]. So the bias-only model is a
classifier using hand-crafted features indicating how words are shared between the two sentences
as the input, the same as that in [10]. Finally, HANS (Heuristic Analysis for NLI Systems) [28] is
utilized as the challenging dataset for evaluation. Then we consider the hypothesis-only bias, which
means that we can only use the hypothesis to predict the relation between premise and hypothesis. So
the bias-only model is defined as a classifier trained to predict labels by only using hypothesis. In the
experiment, we still use MNLI as the training set and employ two hard MNLI datasets [16; 26] for
evaluation. The ‘hard’ subsets are derived from the MNLI Mismatched dataset with two different
strategies: (1) a neural classifier is trained on hypothesis sentences and the wrongly classified instances
are treated as ‘hard’ instances. (2) patterns in hypothesis sentences that are highly correlated to the
specific labels are extracted as surface patterns, and samples which against those surface patterns’
indications are recognized as ‘hard’ samples. Therefore, the two challenging dataset are referred
to as Hard-CD (Classifier Detected) and Hard-SP (Surface Pattern), corresponding to their creation
strategies. For unknown bias, following Utama et al. [41], we build a ‘shallow’ model as the bias-only
model, which has the same architecture as the main model and is trained on a subset of the MNLI
training set. Then we use HANS as the challenging dataset for evaluation as Utama et al. [41].

Baselines and configurations. We experiment with 8 implementations of MoCaD, i.e. two different
calibrators combined with four different ensembling strategies. The two calibrators are temperature
scaling and Dirichlet calibrator, and the four ensembling strategies are those in Product-of-Experts
(PoE), Learned-Mixin (LMin), DRiFt, and Inverse-Reweight (Inv-R). We compare the performances
of these implementations with their corresponding two-stage EBD methods. We denote different
implementations of MoCaD by the name of corresponding EBD methods with the calibrator name as
the subscript. We use TempS and Dirichlet to denote the implemented methods with temperature
scaling and Dirichlet as the calibrator, respectively.

In our experiments, we adopt the BERT-based classifier as the main model and follow the standard
setup for sentence pair classification [13]. The cross-entropy trained model (denoted as CE) is also
included as a baseline, to show the difference between the debiased and un-debiased model. To tackle
the high performance variance on challenging datasets as observed by Clark et al. [10], we run each
experiment five times and report the mean scores and the standard deviations. For each task, we
utilize the training configurations that have been proven to work well in previous studies and keep the
same bias-only model for all methods. For Learned-Mixin, the entropy term weight is set to the value

5https://github.com/TalSchuster/FeverSymmetric
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Table 2: Classification accuracy on MNLI.

Method Syntactic Bias Hypothesis-only Bias Unknown Bias
ID HANS ID HardCD HardSP ID HANS

CE 84.2 ± 0.2 61.2 ± 3.2 84.2 ± 0.2 76.8 ± 0.4 72.6 ± 2.0 84.2 ± 0.2 61.2 ± 3.2

PoE 82.8 ± 0.4 68.1 ± 3.4 83.2 ± 0.2 79.4 ± 0.4 76.8 ± 2.4 80.7 ± 0.2 69.0 ± 2.4

PoETempS 83.9 ± 0.3 69.1 ± 2.8 82.9 ± 0.3 79.6 ± 0.4 77.4 ± 2.4 82.1 ± 0.2 69.9 ± 1.6

PoEDirichlet 84.1 ± 0.3 70.7 ± 1.5 82.7 ± 0.4 79.4 ± 0.2 77.6 ± 2.1 82.3 ± 0.3 70.7 ± 1.0

DRiFt 81.8 ± 0.4 66.5 ± 4.0 83.5 ± 0.4 79.5 ± 0.6 76.3 ± 1.6 80.2 ± 0.3 69.1 ± 1.3

DRiFtTempS 83.0 ± 0.4 69.7 ± 1.8 83.1 ± 0.2 79.6 ± 0.2 77.4 ± 3.3 81.5 ± 0.3 70.0 ± 0.9

DRiFtDirichlet 83.6 ± 0.3 69.8 ± 1.9 82.8 ± 0.3 79.6 ± 0.2 79.0 ± 1.6 81.9 ± 0.6 69.4 ± 1.1

InvR 82.5 ± 0.1 68.4 ± 1.2 83.1 ± 0.2 78.4 ± 0.5 77.1 ± 2.0 78.7 ± 4.8 64.7 ± 2.6

InvRTempS 83.6 ± 0.2 69.4 ± 1.6 82.8 ± 0.2 78.6 ± 0.2 77.9 ± 1.7 81.4 ± 0.5 65.8 ± 0.9

InvRDirichlet 83.7 ± 0.4 69.4 ± 1.3 82.5 ± 0.2 78.9 ± 0.4 80.8 ± 2.0 81.5 ± 0.2 68.2 ± 0.8

LMin 84.1 ± 0.3 65.5 ± 3.7 80.5 ± 0.3 80.0 ± 0.4 78.2 ± 2.0 83.1 ± 0.3 66.5 ± 1.1

LMinTempS 84.1 ± 0.2 63.2 ± 2.7 80.5 ± 0.6 80.3 ± 0.2 80.8 ± 3.6 83.3 ± 0.2 66.2 ± 1.0

LMinDirichlet 84.3 ± 0.3 62.7 ± 2.6 80.1 ± 0.5 79.8 ± 0.4 83.2 ± 2.2 82.7 ± 0.2 66.4 ± 1.2

suggested by Utama et al. [40]. For the Dirichlet calibrator, we set λ = 0.06 for all experiments,
based on the in-distribution performance on the development sets.

6.2 Experimental Results

Now we show our experimental results to answer the aforementioned two questions.

Table 1 shows the experimental results on FEVER. We can see that for both calibrators, MoCaD
outperforms the corresponding EBD methods, including Learned-Mixin, on both Fever-Symmetric
v1 and v2 datasets. Comparing different calibrators, Dirichlet consistently performs better than
TempS. Please note that the label distribution of the development set is different from that of the
training set on FEVER, which explains why sometimes Dirichlet obtains better in-distribution
performance than the cross-entropy loss.

Table 1: Classification accuracy on FEVER.

Method ID Symm. v1 Symm. v2
CE 87.1 ± 0.6 56.5 ± 0.9 63.9 ± 0.9

PoE 84.0 ± 1.0 62.0 ± 1.3 65.9 ± 0.6

PoETempS 82.0 ± 0.9 63.3 ± 0.9 66.4 ± 0.8

PoEDirichlet 87.1 ± 1.0 65.9 ± 1.1 69.1 ± 0.8

DRiFt 84.2 ± 1.2 62.3 ± 1.5 65.9 ± 0.7

DRiFtTempS 81.7 ± 0.9 63.5 ± 1.3 66.5 ± 0.7

DRiFtDirichlet 87.4 ± 1.2 65.7 ± 1.4 69.0 ± 1.3

InvR 84.3 ± 0.8 60.8 ± 1.2 65.2 ± 1.0

InvRTempS 83.8 ± 0.6 61.5 ± 0.9 65.4 ± 0.7

InvRDirichlet 87.0 ± 0.8 63.8 ± 2.2 68.2 ± 1.7

LMin 84.7 ± 1.8 59.8 ± 2.7 65.3 ± 1.1

LMinTempS 84.9 ± 1.7 60.0 ± 2.5 65.6 ± 1.5

LMinDirichlet 87.5 ± 1.1 61.5 ± 2.4 67.1 ± 1.3

Table 2 shows the experimental results
on MNLI with respect to known bias
and unknown bias. The main results
are similar to that on FEVER, i.e. cal-
ibration brings benefit to the debiasing
performance, and Dirichlet obtains
better results than TempS, for all EBD
methods except Learnd-Mixin on HANS.
It indicates that for both known and un-
known dataset bias, MoCaD outperforms
corresponding EBD methods. Please note
that, as a trainable gate function is added
in Learned-Mixin, the optimal bias-only
model of it is different from others and
does not fit our theoretical assumptions.
Specially, the performance gap between
baselines and our methods is relatively
small on Hard-CD. This may due to the
fact that the construction of Hard-CD is
dependent on a specific biased model.

6.2.1 Empirical Verification of Theorem 1

Now we analyze whether the improvement of debiasing performance agrees with our theoretical
study in Theorem 1. That is, calibrated models achieve better uncertainty estimation, leading to better
debiasing performance results.
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To facilitate the study, we demonstrate the classwise-ECE of the calibrated bias-only models on
different training datasets, as shown in Table 3. In the table, Un-Cal, Dirichlet, and TempS denote
the bias-only model without calibration, with temperature scaling and Dirichlet calibrator, respec-
tively. From the results, we can see that calibrated bias-only models on different datasets achieve
better uncertainty estimation, for both calibrators. Comparing the two calibrators, the Dirichlet
calibrator performs better because of its higher expressive power. Further considering the debiasing
improvement in Table 1 and 2, we can see that the empirical findings consist with our theory.

Furthermore, we conduct a more detailed experiment on MNLI and FEVER, regarding syntactic
bias and claim-only bias respectively. Specifically, we adopt the ensembling strategy in PoE, and
calibrate bias-only models with the Dirichlet calibrator and save models at different checkpoints. Then
we consider the debiasing performances of bias-only models with different uncertainty estimation
qualities, measured by classwise-ECE. The results are plotted in Figure 2. We can see that when the
classwise-ECE grows, i.e. the calibration error of the bias-only model grows, the accuracy on the
test set decreases, i.e. the debiasing performance drops. These results precisely prove Theorem 1.

Table 3: Classwise-ECE of the calibrated bias-only
models on different training datasets.

FEVER HANS MNLI Unknown
Un-Cal 7.11 9.83 3.01 7.41

TempS 6.23 7.70 2.38 3.07

Dirichlet 1.73 4.47 0.87 1.45

6.2.2 Empirical Verification of Theorem 2

Theorem 2 reveals the relation between the
confidence of the bias-only model and the in-
distribution error of the main model. That is, if
the confidence, i.e. the uncertainty estimation
of the bias-only model on the predicted label
is reduced, the in-distribution error of the main
model will decrease. Since the label distribution
changes on the development set of FEVER, we
only consider the results on MNLI. From Ta-
ble 2, the in-distribution performance increases in the scenario of syntactic and unknown bias and
decreases in the scenario of hypothesis-only bias, for most implementations. That is because the
syntactic and unknown bias-only model is over-confident, and the hypothesis-only bias-only model is
under-confident, as shown in our Appendix. These results are accordant with our theory.

We provide a detailed experiment to further explain the relationship revealed in Theorem 2. Specially,
we adopt the ensembling strategy in PoE and take temperature scaling as the calibrator, because the
temperature parameter controls the confidence of the calibrated model. The bigger the temperature,
the less confident the obtained model. We manually set the temperature parameter from 0.7 to 1.5 with
step 0.1, and record the in-distribution accuracy on the development set for the calibrated bias-only
model with PoE. The results are plotted in Figure 3. It shows that when the bias-only model is less
confident, the in-distribution performance of the main model improves, which verifies Theorem 2.

7 Conclusions and Future Work

This paper theoretically and empirically reveals an important problem, which is ignored in previous
studies, that existing bias-only models in the EBD methods are poor-calibrated, leading to unsatis-
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factory debiasing performances. To tackle this problem, we propose a three-stage EBD framework
(MoCaD), including bias modeling, model calibrating, and debiasing. Extensive experiments on
natural language inference and fact verification tasks show that MoCaD outperforms corresponding
EBD methods, regarding known and unknown dataset bias. Furthermore, our detailed empirical
analyses verify the correctness of our theorems. We believe that our study will draw people’s attention
to the bias-only model, which has the potential to become an interesting research direction in the
debiasing study. A limitation of this paper is that our empirical studies focus on NLU tasks. Further
experimental results on image classification show inconsistent improvements (See the appendix).
A possible reason is that image classes (e.g., birds or elephants) are less disputed than language
concepts (e.g., entailment or neutral). Thus the invariant mechanism for image classification has a
higher certainty, reducing the impact of calibration error on debiasing according to our theoretical
analysis. In the future, we plan to extend our investigations to end-to-end EBD methods and more
tasks besides NLU.
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A Experiment Settings

A.1 Experimental Settings on FEVER

Bias-only Model The bias-only model is a nonlinear classifier trained on top of the vector represen-
tation of the claim sentence. We obtain this vector representation by max-pooling word embeddings
into a single vector as in Utama et al. [40].

Training Details We follow Schuster et al. [35] to fine-tune the bert-base-uncased model
using the following configuration:learning rate is set to 2× 10−5 and training for 3 epochs. Early
stopping on validation accuracy is adopted. We use 5-fold internal cross-validation to train the
Dirichlet calibrator and ensemble these calibrators by averaging their predictions. For the Dirichlet
calibrator, we drop the bias term, and consider λ ∈ {0.03, 0.06, 0.003, 0.006} and set λ = 0.06 in
all experiments, according to the in-distribution performance on the development sets. We use 5-fold
internal cross-validation to train the Dirichlet calibrator and ensemble these calibrators by averaging
their predictions.

A.2 Experimental Settings on MNLI

Bias-only Model For syntactic bias, we train a nonlinear classifier on top of the hand-crafted
features. Following Clark et al. [10], the hand-crafted features include (1) whether all words in
the hypothesis exist in the premise; (2) whether the hypothesis is a continuous subsequence of the
premise; (3) the fraction of premise words that shared with hypotheses; (4) the mean, min, max of
cosine similarities between word vectors in the premise and the hypothesis. We consider the same
weight for neutral and contradiction class during training by mapping these labels into non-entailment
and divide the outputs of non-entailment during debiasing training. For hypothesis-only bias, we
train a nonlinear classifier on top of an LSTM-based sentence encoder, which only uses hypothesis
sentence as input to predict the labels, as in Utama et al. [40]. For unknown bias, we build a ‘shallow’
model as the bias-only model. It is a bert-base-uncased model fine-tuned on a subset of MNLI
training set for 3 epochs using the learning rate of 5 × 10−5. The subset contained 2K examples
randomly sampled from MNLI training set, as in Utama et al. [41].

Training Details For both hypothesis-only bias and syntactic bias, we fine-tune the
bert-base-uncased model for all settings using the default configuration: learning rate is
set to 5 × 10−5 and training for 3 epochs, as in Utama et al. [40]. The exception is for DRiFt on
syntactic bias since we found it convergences slow on the in-distribution development set. We train it
for 6 epochs for all settings. Early stopping on validation accuracy is adopted. For unknown bias,
we following Utama et al. [41] to fine-tune bert-base-uncased model for all settings using the
following configuration: learning rate is set to 5 × 10−5 and training for 5 epochs. We observed
that MoCaD framework converges faster on the challenging dataset than the original EBD methods.
Since the assumption is not having access to any out-of-domain test data, and there is no available
development set for HANS, we follow [4; 27] to perform the model section on the test set. Here,
we simply pick the model trained at the second-to-last epoch for MoCaD on unknown bias. For the
Dirichlet calibrator, we use the same configuration as in FEVER.

B Proof for Decomposition

Proof. In Zhang et al. [45], it is assumed that there exists a leakage-neutral distribution D with
domain X ×Y ×L×S , where X is the input feature space, L is the sampling strategy feature space
and S is the binary sampling intention space. The observed distribution is denoted as D̂ , which
satisfies PD̂(x, y, l) = PD(x, y, l|S = Y ). In the following, we omit the subscripts for D . The
following assumptions are adopted in [45]:

P(Y |L) = P(Y ), (6)
P(S|X,Y, L) = P(S|L) (7)
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In this framework, P(Y |X) is supposed to be the true principle to learn, corresponding to PD(Y |XS)
in our notation. Now we prove the following decomposition

PD̂(Y |X) ∝ PD̂(Y |L)P(Y |X)
1

PD̂(Y )
(8)

Correspondingly, by our notations we have

PD̂ = PD, L = XB .

As a result, equation 8 is equivalent to the decomposition (1) in the main paper. To prove this equation,
firstly,

PD̂(Y = y|X) = P(Y = y|X,S = Y )

=
P(Y = y, S = y,X)

P(X,S = Y )

=
P(S = y|Y = y, L,XS)P(Y = y,X)

P(X,S = Y )

= P(S = y|L)P(Y = y|X)
P(X)

P(X,S = Y )

∝ P(S = y|L)P(Y = y|X)

Secondly,

PD̂(Y = y|L) = P(Y = y|L, S = Y )

=
P(Y = y, S = y, L)

P(L, S = Y )

=
P(S = y|Y = y, L)P(Y = y, L)

P(L, S = Y )

= P(S = y|L)P(Y = y)
P(L)

P(L, S = Y )

By the above equations we have

PD̂(Y = y|X) ∝
PD̂(Y = y|L)

P(Y = y)
P(Y |X)

P(L, S = Y )

P(L)

∝ PD̂(Y = y|L)P(Y |X)
1

P(Y = y)

As P(Y ) is a prior parameter chosen to balance the posterior distribution, it can be proved that this
condition is satisfied when it equals PD(Y ), as follows:

Pw(Y ) ∝
∑
l

P(Y )

PD̂(Y |L = l)
PD̂(Y |L = l)PD̂(L = l) = P(Y )

where Pw(Y ) denotes the distribution of Y after the reweighting. As a result Pw(Y = y) ∝ PD(Y =
y) is satisfied when P(Y = y) = PD(Y = y). That ends our proof.

C Useful Notations

We introduce some notations used in the proof of theorems.

Notations (Level sets).

SB(b) := {x ∈ X |PD(Y = 0|XB = xb) = b}
SfB (l) := {x ∈ X |pb0(X = x) = l}.
SE(a) := {x ∈ X |PD(Y = 0|X = x) = a}
SR(s) := {x ∈ X |P(Y = 0|XS = xs) = s}
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Notation (s̃).

s̃a,b =
a(1− b)

a(1− b) + b(1− a)

Notations (Y S , Ỹ , Ŷ ).
Y S(x) := argmaxi∈Y PD(Y = i|XS = xs), (9)

Ỹ (x) := argmaxi∈Y PD,f∗M (Y = i|X = x). (10)

Ŷ (x) := argmaxi∈Y PD(Y = i|X = x) (11)

Notation (Pi(·)). Denote Pi(S) := PD(Y S = i|S).
Definition 1 (False Reversal Rate). For an input x, we say fB(x) induces a false reversal if Ỹ (x) 6=
Ŷ (x) = Y S(x). The false reversal rate of a set S is defined as PD(Sfr)

PD(S) , where x ∈ Sfr if it occurs
false reversal and x ∈ S.

Similarly we define the False Agreement Rate:
Definition 2 (False Agreement Rate). For an input x, we say fB(x) induces a false agreement, if
Ỹ (x) = Ŷ (x) 6= Y S(x). The false agreement rate of a set S is defined as PD(Sfa)

PD(S) , where x ∈ Sfa if
it occurs false agreement and x ∈ S.

D Proof of Theorem 1

First we prove the following lemma.
Lemma 3. DenoteRb(a) := P1(SE(a) ∩ SB(b)), and pB(a|b) := PD(SE(a)|SB(b)). We have

Rb(a) = P1(SR(s̃a,b)) = I(s̃a,b < 0.5), (12)
pB(a|b) = Ca,bPD(SR(s̃a,b)), (13)

where Ca,b = 1
2 (ab + 1−a

1−b )−1.

Proof. For the first equation, it is obvious that SE(a) ∩ SB(b) = SR(s̃a,b) ∩ SB(b). Then we have

P1(SE(a) ∩ SB(b)) = P1(SR(s̃a,b) ∩ SB(b)).

By the definition of P1 we have
P1(SR(s̃a,b) ∩ SB(b)) = P1(SR(s̃a,b)) = I(s̃a,b < 0.5)

The first equation follows.

By XS ⊥⊥ XB |Y on PD, As P(Y = 0|XS) is a function of XS , PD(Y = 0|XB) is a function of
XB , we have

PD(Y = 0|XS)⊥PD(Y = 0|XB)|Y (14)
Without loss of generality, we can assume that PD(Y = 0|XS) takes value in a discrete set V . By
the decomposition that

PD(Y |X) ∝ PD(Y |XB)PD(Y |XS)
We have

PD(SE(a)|SB(b)) =
∑
i=0,1

PD(SR(s̃a,b)|SB(b), Y = i)PD(Y = i|SB(b))

=
∑
i=0,1

PD(SR(s̃a,b)|Y = i)PD(Y = i|SB(b))

=
∑
i=0,1

1

2
PD(Y = i|SR(s̃a,b))PD(SR(s̃a,b))PD(Y = i|SB(b))

=
1

2
(s̃a,b · b+ (1− s̃a,b)(1− b))PD(SR(s̃a,b))

=
1

2
(
a

b
+

1− a
1− b

)−1PD(SR(s̃a,b)).

The second equation follows.
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Now we start the proof of the theorem.

Proof. Without the loss of generality, consider the case when l0 > 0.5. The proof for l0 < 0.5 has
a symmetric form. DenoteR(a) := P1(SE(a) ∩ SfB (l)), and pf (a|l) := PD(SE(a)|SfB (l)). The
False Reversal Rate and False Agreement Rate on SfB (l) is

FR(l) =
∑
a

R(a)pf (a|l)I(a > l)I(a < 0.5) + (1−R(a))pf (a|l)I(a < l)I(a > 0.5) (15)

FA(l) =
∑
a

(1−R(a))pf (a|l)I(a < l)I(a < 0.5) +R(a)pf (a|l)I(a > l)I(a > 0.5) (16)

The total debiasing error on SfB (l) is the summation of False Reversal Rate and False Agreement
Rate, which denoted as E(l). The difference of total debiasing error at l = a is

∆E(a) = (1− 2R(a))pf (a|l) (17)

∆E(a) < 0 whenR(a) ∈ [0, 0.5), pf (a|l) > 0, ∆E(a) > 0 whenR(a) ∈ (0.5, 1], pf (a|l) < 0. By
that, when pf (a|l) > 0,∀a ∈ (0, 1), the total debiasing error is minimized at a s.t. R(a) = 0.5.

Denote pBf (b|l) := PD(SB(b)|SfB (l)). We have

R(a) =
∑
b

Rb(a)pB(a|b)pBf (b|l) 1

pf (a|l)
(18)

We suppose the support of PD(Y = 0|XB) condition on SfB (l) is on (l0 − ε, l0 + ε), i.e. pBf (b|l) is
non-zero only if b ∈ (l0 − ε, l0 + ε).

By Lemma 3, we have
Rb(a) = I(s̃a,b < 0.5) (19)

When a ∈ (l0 + ε, 1), s̃a,b > 0.5,∀b. ThusRb(a) = 1,∀b. We have

R(a) =
∑
b

pB(a|b)pBf (b|l) 1

pf (a|l)
= 1 (20)

Similarly it can be derived that R(a) = 0 when a ∈ (0, l0 − ε). As a result, the debiasing error is
non-decreasing as l decreases on the interval (0, l0 − ε) or increases on the interval (l0 + ε, 1), i.e.
The debiasing error increases as |l − PD(Y = 0|SfB (l))| increases. Denote the absolute difference
between PD(Y = 0|SfB (l)) and lopt which minimizes the debiasing error E as δ(l0, ε, α). As

PD(Y = 0|SfB (l)) =
∑
b

bpBf (b|l) ∈ (l0 − ε, l0 + ε), (21)

lopt ∈ (l0 − ε, l0 + ε), we have δ(l0, ε, α) < 2ε.

Now we consider the case when α := minXS maxi∈{0,1} PD(Y = i|XS) > 0, i.e. PD(SR(s)) = 0
when s ∈ (1− α, α). When s̃a,b ∈ (1− α, α), by Lemma 1 pB(a|b) = 0, and we have

a ∈ (
b

1−b
1−α + 2b− 1

,
b

1−b
α + 2b− 1

) =: (Lα,b, Uα,b) (22)

Both Lα,b and Uα,b increase as b increase. As a result, for ∀a ∈ (Lα,l0+ε, Uα,l0−ε), pf (a|l) =∑
b pB(a|b)pBf (b|l) = 0. When l0 − ε = Lα,l0+ε, we have

α =
1

2
+

ε

2l0(1− l0) + 2ε2
=: Cα (23)

When l0 + ε = Uα,l0−ε, we also have α = Cα. As Lα,l0+ε decreases and Uα,l0−ε increases with
α, when α < Cα, we have the same conclusion: ∆E(a) ≥ 0 when a ∈ (l0 + ε, 1) and ∆E(a) ≤ 0
when a ∈ (0, l0 − ε), and δ(l0, ε, α) < 2ε. That gives the first conclusion in Theorem 1.
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For the case when α > Cα, Lα,l0+ε < l0 − ε and Uα,l0−ε > l0 + ε. We consider the quantity
l0 − ε− Lα,l0+ε and Uα,l0−ε − l0 + ε. Denote D(α, l0, ε) = 2l0 − (Lα,l0+ε + Uα,l0−ε). We have

∂D

∂α
=

(l0 + ε)(1− l0 − ε)
(1− (l0 + ε) + 2(l0 + ε− 1)(1− α))2

− (l0 − ε)(1− l0 + ε)

(1− (l0 − ε) + 2(l0 − ε− 1)α)2
(24)

=
−(2l0 − 1)[2εα2 + 2α(l0 + ε)(l0 − ε)− 2α(l0 + ε)− (l0 + ε)(l0 − ε) + l0 + ε]

(1− (l0 + ε) + 2(l0 + ε− 1)(1− α))2(1− (l0 − ε) + 2(l0 − ε− 1)α)2
(25)

=: − 1

A
[2εα2 + 2α(l0 + ε)(l0 − ε)− 2α(l0 + ε)− (l0 + ε)(l0 − ε) + l0 + ε], A > 0 (26)

There exists α′ s.t. ∂D∂α (α, l0, ε) < 0 when α < α′, ∂D∂α (α, l0, ε) > 0 when α > α′. When α = Cα,

∂D

∂α
(Cα, l0, ε) =

2ε(l0 + ε)(l0 − ε)(1− (l0 + ε))(1− (l0 − ε))
A[2(l0 + ε)(l0 − ε)− 2l0]2

> 0 (27)

Thus D(α, l0, ε) > D(Cα, l0, ε) = 0 when α > Cα. Denote C := l0 − ε− l0+ε
(l0+ε)+(1−l0−ε) α

1−α
, we

have lopt ∈ (l0 − ε− C,Uα,l0−ε), as a result C < δ(l0, ε, α) < 2ε+ C. That ends our proof.

E Proof of Theorem 2

Proof. As Ỹ (X) = 0 if and only if PfB (Y = 0|X) > PfB (Y = 1|X). The later is equivalent to

PD(Y = 0|X)/qb0(x) > PD(Y = 1|X)/qb1(x),

equivalently
PD(Y = 0|X) > qb0(x).

As a result, when Ŷ (X) 6= Ỹ (X), we have

PD(Y = Ŷ (x)|X = x) < qb
Ŷ (x)

(x)

Conversely, the above equation induces Ỹ (X) 6= Ŷ (X).
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Figure 4: Reliability diagrams of the bias-only models on MNLI. On MNLI, (a) the syntactic bias-only
model and (c) the unknown bias-only model are over-confident, (b) the hypothesis-only bias-only
model is under-confident.

F Over- or Under-Confidence of the Bias-only Model on MNLI

We plot the confidence-reliability diagram [15] of these three models in Figure 4. The wide blue bars
show the average accuracy of the bias-only model, and the narrow red bars show the gap between
the average accuracy and the confidence of the bias-only model, i.e., the uncertainty estimation on
the predicted class. For perfectly calibrated predictions, the curve in a reliability diagram should
be as close as possible to the diagonal. Most of the blue bars below the diagonal indicate that the
model is over-confident, otherwise is under-confident. It can be observed that the syntactic bias-only
model and unknown bias-only model are over-confident, and the hypothesis-only bias-only model is
under-confident.

G The Classification Accuracy of the Calibrated Bias-only Models

To facilitate the study, we demonstrate the classification accuracy of the calibrated bias-only models
on different training datasets, as shown in Table 4. In the table, Un-Cal, Dirichlet, and TempS
denote the bias-only model without calibration, with temperature scaling and Dirichlet calibrator,
respectively.

Table 4: Accuracy of the calibrated bias-only models on different training datasets.

FEVER HANS MNLI Unknown
Un-Cal 60.6 54.8 63.8 63.2

TempS 60.6 54.8 63.8 63.2

Dirichlet 62.7 69.9 64.0 63.4

H Experiment on Image Classification

In image classification experiments, we validate the effectiveness of MoCaD on the texture bias in
realistic images.

Datasets We follow Bahng et al. [2] to conduct our experiment. The experiment is conducted on
the 9-Class Imagenet dataset [2], which is a subset of ImageNet [12] containing 9 super-classes. The
validation dataset and ImageNet-A [21] are used for evaluation. For the in-distribution validation
dataset, an ‘unbiased’ accuracy measurement is used to evaluate the debiasing performance, denoted
as Unbiased. It first obtains the proxy ground truths c ∈ {1, . . . ,K} for texture bias using texture
feature clustering. Then the dataset is grouped according to the texture-class combination (c, y).
The combination-wise accuracy Ac,y is computed by Corr(c, y)/Pop(c, y), where Corr(c, y) is the
number of correctly predicted samples in (c, y) and Pop(c, y) is the total number of samples in
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(c, y). Finally, Unbiased is the mean accuracy over all Ac,y where the population Pop(c, y) > 10.
Specifically, the texture features are extracted from images by computing the gram matrices of
low-layer feature maps to capture the edge and color cues. It uses the feature maps from layer
relu1_2 of the ImageNet pre-trained VGG16 [36]. The clustering process is done with the mini-
batch k-means algorithm with k = 9 and batch size 1024. As k-means clustering is non-convex, the
clustering is repeated three times with different initialization, and the averaged performance across
the three trials is reported. ImageNet-A [21] is a dataset of natural adversarial filtered images that
fool ImageNet-trained ResNet50 [20]. The images consist of many failure modes of networks when
“frequently appearing background elements” [21] become erroneous cues for recognition.

Main Model and Bias-only Model Following [2], the main model is a fully convolutional network
followed by a global average pooling (GAP) layer and a linear classifier. Specifically, ResNet-50
architecture [20] is adopted as the main model. The bias-only model is a CNN with smaller receptive
fields, which is expected to biased towards texture bias. Specifically, it is a BagNet [6], which is
a variant of the ResNet50 architecture, by replacing many 3 × 3 with 1 × 1 convolutions, thereby
limiting the receptive field size of the topmost convolutional layer.

Table 5: Classification accuracy on image classification.

Method ID UnBiased ImageNet-A
PoE 94.6 ± 0.2 94.3 ± 0.3 31.8 ± 1.9

PoETempS 94.7 ± 0.3 94.5 ± 0.3 31.9 ± 1.1
PoEDirichlet 94.6 ± 0.4 94.3 ± 0.4 30.5 ± 1.2

DRiFt 94.6 ± 0.2 94.4 ± 0.3 31.9 ± 0.8

DRiFtTempS 94.8 ± 0.4 94.4 ± 0.4 32.5 ± 1.2
DRiFtDirichlet 94.5 ± 0.2 94.3 ± 0.2 32.4 ± 1.0

InvR 94.5 ± 0.4 94.1 ± 0.5 31.6 ± 0.3

InvRTempS 94.3 ± 0.1 93.8 ± 0.1 32.2 ± 1.5

InvRDirichlet 94.4 ± 0.4 94.2 ± 0.2 31.8 ± 0.9

LMin 90.9 ± 0.5 90.5 ± 0.6 27.7 ± 1.6

LMinTempS 91.1 ± 0.6 90.6 ± 0.6 28.1 ± 1.8

LMinDirichlet 91.2 ± 0.2 90.9 ± 0.2 26.1 ± 0.8

Training Details and Configurations We follow the configuration in [2]: the batch size is set to
128; learning rates are initially set to 0.001 and are decayed by cosine annealing and training for
120 epochs. As advised by Bahng et al. [2], we use AdamP optimizer [22] in the experiment. We
experiment with 8 implementations of MoCaD, i.e. two different calibrators combined with four
different ensembling strategies as the same as in previous experiments. For Learned-Mixin, the
entropy term weight is set to the value suggested by [2]. We run each experiment five times and
report the mean scores and the standard deviations. For the Dirichlet calibrator, we use the same
configuration as in FEVER.

Experimental Results Table 5 shows the experimental result on image classification. We can
see that our MoCaD can achieve the best debiasing performance among all EBD methods, but the
improvement is inconsistent. According to our theoretical analysis, that may because the invariant
mechanism for image classification task has a higher certainty (bigger α), reducing the impact of
calibration error on debiasing.
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