
Towards Ubiquitous Learning: A First Measurement of On-Device
Training Performance

Dongqi Cai
State Key Laboratory of Networking
and Switching Technology, Beijing

University of Posts and
Telecommunications, China

cdq@bupt.edu.cn

Qipeng Wang
Key Lab of High Confidence Software
Technologies (Peking University),

MoE, China
wangqipeng@stu.pku.edu.cn

Yuanqiang Liu
Key Lab of High Confidence Software
Technologies (Peking University),

MoE, China
yuanqiangliu@pku.edu.cn

Yunxin Liu
Institute for AI Industry Research
(AIR), Tsinghua University, China
liuyunxin@air.tsinghua.edu.cn

Shangguang Wang
Shenzhen Research Institute, Beijing

University of Posts and
Telecommunications, China

sgwang@bupt.edu.cn

Mengwei Xu
State Key Laboratory of Networking
and Switching Technology, Beijing

University of Posts and
Telecommunications, China

mwx@bupt.edu.cn

ABSTRACT
We are witnessing the emergence of ubiquitous learning, where
each device (smartphones, wearables, IoTs, etc) can learn from their
environments either alone or collaboratively. Such a new para-
digm is enabled by deep learning techniques, or more specifically,
on-device training. Given its popularity in the machine learning
community, unfortunately, there are no systematic understandings
of a critical question: how much cost does it take to train typical
deep models on commodity end devices? Therefore, this work per-
forms comprehensive measurements of on-device training with the
state-of-the-art training library, 6 mobile phones, and 5 classical
neural networks. Our measurements report metrics of training time,
energy consumption, memory footprint, hardware utilization, and
thermal dynamics, thus help reveal a complete landscape of the
on-device training performance. The observations from the mea-
surements help guide us to several promising future directions to
efficiently enable ubiquitous learning.

CCS CONCEPTS
•General and reference→Measurement; •Computingmethod-
ologies →Machine learning; • Human-centered computing
→ Ubiquitous computing.

KEYWORDS
Measurement Study; Machine Learning; Ubiquitous Learning

ACM Reference Format:
Dongqi Cai, Qipeng Wang, Yuanqiang Liu, Yunxin Liu, Shangguang Wang,
and Mengwei Xu. 2021. Towards Ubiquitous Learning: A First Measurement

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.
EMDL’21 , June 25, 2021, Virtual, WI, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8597-8/21/06. . . $15.00
https://doi.org/10.1145/3469116.3470009

of On-Device Training Performance. In 5th International Workshop on Em-
bedded and Mobile Deep Learning (EMDL’21), June 25, 2021, Virtual, WI, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3469116.3470009

1 INTRODUCTION
Deep learning technique is revolutionizing how edge devices inter-
act with users or the world, including smartphones and IoT devices.
Fueled by the increasingly powerful on-chip processors, the infer-
ence (or prediction) stage of deep learning is known to happen on
edge devices without cloud offloading, making a case for low delay
and data privacy protection [17, 18, 20–22]. Beyond inference, the
training stage of deep learning is still commonly placed on data
centers [8, 24] for its tremendous demand of massive training data
and computing resources.

In recent years, however, we are witnessing the emergence of
a new paradigm that directly leverages edge devices for model
training, referred as “ubiquitous learning”. Use cases of ubiquitous
learning abound: input method [1], virtual assistant [2], item rec-
ommendation [13], etc. While the learning protocols may diversify,
e.g., federated learning [12], split learning [15], and local transfer
learning [19], they all rely on a fundamental system component: on-
device training library. Given the highly constrained resources on
edge devices and the huge resource demand of deep learning train-
ing stage, it’s intuitive to ask whether edge devices can really afford
training modern NN models and if so, do current libraries efficiently
support that?

While ubiquitous learning is attracting increasing attentions
from research communities, most existing efforts focus on the al-
gorithm level [11]. They address the challenges like non-iid data
distribution, huge data transmission among cloud and devices, and
data privacy protection. Their proposed approaches are mostly
evaluated via simulation [23]. A few recent studies use Raspberry
Pi (RPI) devices to study ubiquitous learning [7], but often in an
incomprehensive way and omit smartphones, the killer use case
for ubiquitous learning. In a nutshell, there’s a lack of system-
level understanding of how ubiquitous learning is supported

https://doi.org/10.1145/3469116.3470009
https://doi.org/10.1145/3469116.3470009

EMDL’21 , June 25, 2021, Virtual, WI, USA Dongqi Cai, Qipeng Wang, Yuanqiang Liu, et al.

Testing
platform

Training
library

Training time (ms)
BS = 1 BS=2 BS=4

Samsung
Note 10

MNN 516 812 1365
DL4J 3,032 6,129 OOM

RPI 3B+
MNN 6698 10,651 OOM
TensorFlow 10,468 14,157 27,574
PyTorch 48,274 79,097 OOM

Table 1: A brief comparison of training libraries on edge
devices. Time measured as training one batch of MobileNet-
v2. “BS”: batchsize. All experiments run on CPU.

by commodity edge devices and state-of-the-art training li-
braries.

For the first time, we present a comprehensive measurement
study of on-device training performance. We build a full-fledged
benchmark suite based on MNN [10], the state-of-the-art training
library for edge devices. The benchmark includes 5 classical NN
models, and can report all-sided training performance metrics in-
cluding training latency, energy consumption, memory footprint,
hardware utilization, and thermal dynamics. We then carry out
experiments on 6 different Android devices. We also investigate the
impacts of system parameters (CPU cores and frequency) on the
training performance.

Our experimental results shed light on future optimizations to
efficiently enable ubiquitous learning. For example, we find that
MNN is still at a preliminary stage and its implementation is far from
being efficient as compared to its inference functionality that has
been optimized for many years. The memory constraint imposed
by both the physical RAM and OS’s resource allocation strategies
severely limits the batchsize of training and therefore potentially
hurt the convergence performance. In addition, tuning the system
parameters opens rich tradeoff among multiple on-device training
metrics. The training libraries should adapt those parameters to
cater for each concrete scenario.

Open source The full benchmark suite and measurement results
used in this work are available here1.

2 MEASUREMENTS
2.1 Experiment setups
On-device training library We first investigate the ML libraries
that support training on typical edge platforms. (1) On Android
phones2, only MNN [10] and DL4J [3] have off-the-shelf support
to train NNs locally. (2) On RPI devices, MNN and many other
traditional ML libraries (e.g., TensorFlow and PyTorch) enable local
training. To study the status quo of on-device training, we first
briefly compare the performance of those frameworks. As shown
in Table 1, on both Android phone and RPI, MNN achieves better
performance than its competitors. It is not surprising as MNN is
lightweight, highly-optimized for edge devices, and already widely

1https://github.com/UbiquitousLearning/Benchmark-On-Device-Training
2There are other libraries like CoreML supporting NN training on iOS devices, but
they are omitted in this study since iOS devices are difficult to be instrumented to
obtain low-level measurement results.

Device Specifications Yr.
Redmi Note 9 Pro Snapdragon 720G, 6GB RAM 2020
Xiaomi MI 9 Snapdragon 855, 6GB RAM 2019
Huawei Mate 30 Kirin 990, 8GB RAM 2019
Meizu 16T Snapdragon 855, 6GB RAM 2019
Samsung S8+ Snapdragon 835, 6GB RAM 2017
Huawei Honor 8 Kirin 950, 3GB RAM 2016

Table 2: Testing devices.

adopted in popular productions of Alibaba Inc. Therefore, the rest
of this study focuses MNN as the major testing objective.

Metrics The processing time (for both inference and training) is
directly logged in our benchmark suit. The temperature informa-
tion is obtained through dumpsys tool. Other system information,
including hardware utilization CPU, energy consumption, andmem-
ory footprint are obtained through Android’s virtual filesystem (e.g.,
/sys and /proc).

DevicesWe carry out our experiments on 6 devices with diverse
SoC models and computing capacity, as summarized in Table 2.
By default, all experiments run on mobile CPU with 4 cores. We
observe that the training tasks will always be scheduled to the big
cores that operate at highest frequency as determined the OS.

Models We test 5 classical CNN models in our experiments:
LeNet (2 convs, 3.2K parameters), AlexNet (5 convs, 61M param-
eters), MobileNetv2 (53 convs, 3.4M parameters), SqueezeNet (18
convs, 411.2K parameters), and GoogLeNet (22 convs, 6.8M param-
eters).

Datasets We use two different datasets for the experiments:
MNIST dataset (70000 images, 10 classes, 28 × 28 × 1 inputsize)
and a subset of ImageNet (3200 images, 4 classes, 224 × 224 × 3
inputSize).

2.2 Training time and breakdown
Overall latency Figure 1 illustrates the inference and training
time of each model on Meizu 16T. Our primary observation is
that the training time is much larger than the inference time (up to
17.8× gap with MobileNet and batchsize 16). Such a measured gap is
significantly larger than the theoretical FLOPs gap (around 3×). This
is because, MNN was first released as an inference-only engine and
thus highly optimized for that. The training support was first added
in late 2019, and the implementation of many operators is to be
improved. Indeed, due to its huge number of operators and dynamic
parameter update, training functionality is muchmore difficult to be
efficiently implemented than inference functionality. For example,
many sophisticated optimizations designed for inference operators
like winograd convolution cannot be applied to deconvolution in
backward pass. In addition, the one-shot pre-processing of weight
tensors for inference speedup cannot be used in training either as
the weights will be updated during backward propagation.

We also observe that with larger batchsize, the training time
increases more significantly than the inference time. This is mainly
because, as confirmed by Figure 2, the CPU usage during training
is already close to maximal with relatively small batchsize (400%
as 4 CPU cores are used by default), while during inference using

https://github.com/UbiquitousLearning/Benchmark-On-Device-Training

A First Measurement of On-Device Training Performance EMDL’21 , June 25, 2021, Virtual, WI, USA

0 10 20
Batch size

0

10

20

T
im

e
(m

s)

(a) LeNet

0 10 20
Batch size

0
T

im
e

(s
)

(b) SqueezeNet

0 10 20
Batch size

0

2

4

T
im

e
(s

)

(c) GoogLeNet

0 10 20
Batch size

0

2

4

6

T
im

e
(s

)

(d) AlexNet

0 5 10 15
Batch size

0

2

4

6

8

T
im

e(
s)

(e) MobileNet

Training time (nC=1) Training time (nC=4) Training time (nC=8) Inference time (nC=4)

Figure 1: The training and inference time with various batchsize on Meizu 16T. “nC”: number of CPU cores used for train-
ing/inference. The training task is scheduled to big cores first by the OS.

0 10 20
Batch size

250

300

350

400

C
P

U
u

sa
ge

(%
)

(a) Training

0 10 20
Batch size

150

200

250

300

350

400

C
P

U
u

sa
ge

(%
)

(b) Inference

LeNet

SqueezeNet

GoogLeNet

AlexNet

MobileNet

Figure 2: CPU usage of training/inference on MI 9.

larger batchsize can noticeably increase the CPU usage thus the
inference latency increases sublinearly.

CPU core number MNN allows developers to configure the
number of CPU cores to be used. Figure 1 also illustrates the train-
ing time with different core numbers used (1, 4, and 8). Our main
observation is that multiple cores can often speed up the training as
compared to one single core. The only exception is on LeNet with
small batchsize (≤16) where using only one core exhibits the best
performance. This is because LeNet is a tiny model that can hardly
benefit from multi-core parallelism. On the other hand, more CPU
cores don’t always bring improvements. In fact, distributing the
training into all 8 CPU cores often leads to the highest training
time. This is mainly because mobile CPU cores are asymmetric,
i.e., big.LITTLE architecture, and MNN’s workloads partitioning
strategies is imperfect [16]. The observation is consistent with infer-
ence stage, where we observe that 4 CPU cores achieve the lowest
latency in most cases.

Cross-device comparison Figure 3 further compares the train-
ing time on different devices. Overall, the performance disparity
across devices is pervasive and can be up to 4.0× (MobilenetV2
model among Meizu 16T and Samsung S8+). For collaborative learn-
ing across mobile devices like federated learning, such heteroge-
neous computing capacity needs to be considered to better synchro-
nize the training pace. Interestingly, we also observe that different
devices have distinct “model affinity”. For example, SqueezeNet

trains fastest on Meizu 16T while AlexNet trains fastest on Huawei
Mate 30.

Latency breakdown We further break down the end-to-end
training time into the lowest operator level. The results are sum-
marized in Figure 4. Raster and MatMul are the two most time-
consuming operators. In MNN, Raster operator is a unified imple-
mentation of all traditional operators that are related to tensor shape
transformations, including slice, concat, reshape, broadcast,
etc. For example, the convolution operation in MNN is implemented
with 3 Raster (two to convert input and filters, one to convert out-
put) and 1 MatMul. After communicating with the developers of
MNN, we find that the reason MNN doesn’t implement those oper-
ators individually is mainly because using one operator (Raster) to
represent those similar operations can help them focus on optimiz-
ing that particular operator and thus greatly reduce the developers’
efforts. However, such a simplified design inevitably sacrifices the
running performance of operators.

2.3 Memory footprint
NN training is known to be memory hungry. Figure 5 shows the
memory footprint of each tested model with diverse batchsizes on
Mate 30. As observed, with a typical batchsize 16, the memory usage
of the tested models (except LeNet) is about a few GBs. For those
models, 16–64 is the maximal batchsize that a high-end mobile
phone (e.g., MI 9 with 6GB RAM) can support. This is much more
than thememory requirement of inference stage (e.g., a few hundred
MBs for MobileNet) because, during inference, the input is usually
fed into model one by one and the intermediate tensors don’t need
to be preserved for backward propagation.

Noting that our experiments are carried out in a “clean” environ-
ment without other co-running applications. In practice, however,
requesting such a high amount of memory may cause other applica-
tions to be swapped out, or raises the risk of the training app itself
to be moved out of memory by the OS. Therefore the memory usage
of on-device training task shall be more strictly confined, indicating
that an even smaller batchsize can be eventually employed, e.g., 4
for MobileNet to keep the memory usage under 1GB. Such a small
batchsize has been demonstrated to be not enough to guarantee the
model convergence [14]. For example, our micro experiments show
that using batchsize smaller than 128 will cause significant accuracy
drop of MobileNet-v2 and SqueezeNet on CIFAR-100 datasets.

EMDL’21 , June 25, 2021, Virtual, WI, USA Dongqi Cai, Qipeng Wang, Yuanqiang Liu, et al.

LeN
et

Sq
ue

ez
eN

et

G
oo

gL
eN

et

Alex
Net

M
ob

ile
Net

0

2

4

6

8

10

T
im

e
(s

)

(ms)

SamsungS8

RedmiNote9P

SamsungS8+

Meizu

XiaoMi9

Mate30

0 5
0

25

Figure 3: Training time on different
mobile devices (batchsize=8).

0 20 40 60 80 100
Op-level time breakdown (%)

LeNet

SqueezeNet

GoogLeNet

AlexNet

MobileNet

Raster MatMul BinartOp Others

Figure 4: Op-level breakdown of training
time on Xiaomi MI 9.

0 5 10 15 20
Batch size

0

1

2

3

M
em

or
y

(G
)

LeNet

SqueezeNet

GoogLeNet

AlexNet

MobileNet

Figure 5: Peak memory usage during
training.

0 5 10 15 20
Batch size

0

10

20

30

E
n

er
gy

(J
)

(a) per batch

0 5 10 15 20
Batch size

0

1

2

3

E
n

er
gy

(J
)

(b) per sample

LeNet

SqueezeNet

GoogLeNet

AlexNet

MobileNet

Figure 6: Per-batch and per-sample energy consumption of
training on Redmi Note 9 Pro.

2.4 Energy consumption
Figure 6 summarizes the energy consumption per batch (a) and per
sample (b) with different models and batchsizes. In this experiment,
we run each model for 20 batches and subtract the energy con-
sumption during that running period by the baseline energy when
no training task is running. The increased output power during
training is multiplied by the duration of training to calculate the
energy consumption.

As observed, the per-batch energy consumption significantly
increases with larger batchsize mainly because of the increased
training time. However, the per-sample energy consumption de-
creases with larger batchsize (e.g., from 1 to 16 for GoogLeNet). This
is because the training time doesn’t linearly scale with the batchsize
since larger batchsize benefits the intra-operator parallelism (§2.2).
It indicates that to iterate over a local dataset, using larger batchsize
can be more energy-efficient.

2.5 Impacts of CPU parameters
We then study how system configurations (CPU in our case) af-
fect the training performance. We vary the CPU core numbers
(1×/2×/4× big cores, 1×/2×/4× small cores, or 8 hybrid cores) and
the frequency for each core (highest, medium, lowest) on Meizu
16T with Snapdragon 855 (4 big cores + 4 small cores). The results
are summarized in Table 3.

Time (s) Energy (J)CPU Conf. H M L H M L
1× 4.2 5.4 10.8 10.6 8.0 6.9

Big 2× 2.6 3.2 6.4 8.9 7.7 7.0
4× 2.0 3.3 8.4 7.1 8.7 8.2
1× 25.0 33.9 57.8 10.4 7.2 3.1

Small 2× 13.3 18.0 31.8 10.1 8.4 4.8
4× 8.0 11.0 52.3 11.4 9.6 8.2

Hybrid 8× 3.8 6.5 50.4 13.4 13.9 14.4
Table 3: Training performance with different CPU configura-
tions on Meizu 16T. “H”: highest frequency (2.4GHz/1.8GHz
for big/little core); “M”: medium frequency (1.6GHz/1.2GHz
for big/small core); “L”: lowest frequency (0.7GHz/0.6GHz
for big/little core). Model: Alexnet. Batchsize: 16. Numbers
in red/gray indicate the best/worst performance.

For training time, using 4 big cores with the highest frequency
achieves the best performance. The result is consistent with Figure 1
and the reasons are explained in Section 2.2. In consideration of
energy consumption, however, using only one small core with
the lowest CPU frequency leads to the lowest usage. Its energy
consumption is only 43.7% of the optimal case of training time,
despite it runs 28.9× slower.

The observation indicates a large space of tradeoff between train-
ing time and energy consumption. In reality, both metrics play key
roles in ubiquitous learning. Taking federated learning as an ex-
ample, developers expect the on-device training to be completed
shortly therefore the global model converges fast. Meanwhile, the
energy consumption shall be minimized to not compromise user
experience. Considering the hardware heterogeneity across devices
and dynamics of network bandwidth, it’s nontrivial to choose an
appropriate system configuration for each device.

2.6 Thermal dynamics
To reach a usable accuracy, the training phase often takes a substan-
tial period of time, e.g., minutes for each round of federated learn-
ing [4] or even hours for continuous local transfer learning [19].
Such a long duration of intensive computation may lead to thermal
issues and therefore the CPU frequency change due to dynamic
voltage and frequency scaling (DVFS) even without any other ap-
plications running. Thus we investigate into the thermal dynamics

A First Measurement of On-Device Training Performance EMDL’21 , June 25, 2021, Virtual, WI, USA

0 5 10 15 20

Time (minute)

26

28

30

32

34

36

38

40

T
em

p
er

at
u

re
(◦

C
)

Temperature

1.6

1.8

2.0

2.2

2.4

F
re

q
(M

H
z)

Freq

(a) Meizu 16T

0 10 20 30 40 50 60 70

Time (minute)

20

22

24

26

28

30

32

T
em

p
er

at
u

re
(◦

C
)

Temperature

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

F
re

q
(M

H
z)

Freq

(b) Samsung S8+

Figure 7: The temperature and CPU frequency dynamics
during on-device training.

AlexNet
BS=8

AlexNet
BS=4

SqueezeNet
BS=4

SqueezeNet
BS=2

LeNet
BS=32

0

2

4

T
im

e
(s

) GPU

CPU

(a) Huawei Mate 30 (Mali)

AlexNet
BS=8

GoogLeNet
BS=2

SqueezeNet
BS=4

SqueezeNet
BS=2

LeNet
BS=8

0

2

4

6

T
im

e
(s

) GPU

CPU

(b) Redmi Note 9 Pro (Adreno)

Figure 8: Comparing the training time of two mainstream
GPU models to CPUs. “BS”: batchsize.

and their impacts on the CPU frequency (averaged across all 4 used
cores) on two devices and illustrate the results in Figure 7.

On both tested devices, we observe the temperature rising and
the CPU underclocking. Though, the specific behavior differs on
different devices. For instance, on Meizu 16T the device tempera-
ture rises more sharply from 25°C to 39°C in 10 minutes, and the
average CPU frequency gradually drops from 2.5GHz to 1.8GHz.
On Samsung S8+, it takes around 30 minutes of training to raise the
temperature from 20°C to 32°C, while the CPU frequency jitters for
a while and stabilizes around 1.8GHz. Such heterogeneous thermal
dynamics may complicate the ubiquitous learning process, e.g., the
device selection in federated learning.

2.7 Mobile CPU vs. Mobile GPU
We also study the training performance of MNN on mobile GPUs.
Since MNN’s GPU support for training is not complete, we man-
ually add support for several missing operators like onehot. As
summarized in Figure 8, both Mali (Huawei Mate 30) and Adreno
(Redmi Note 9P) run much slower than CPU (1.8×–12.0×).

According to our experience in tuning operators for on-GPU
training, one of the primary unique challenges is batchsize, a new
variable introduced in training that affects the tensor shape and
thus a lot of other aspects at implementation level such as memory
layout and alignment. For inference engines like tflite, however,
the most common use case is batchsize as 1, and a larger batchsize
can be simply regarded as a sequence of single samples aggregated.
Therefore, almost every inference engine is specifically tuned for
that case, markedly simplfying the development of GPU kernels.

Another reason is that, as discussed in Section 2.2, MNN splits
common operators into smaller, more basic operators. Many of
those basic operators like Raster are memory-intensive, so cannot
benefit from high parallelism of GPUs.

3 CONCLUSIONS AND FUTUREWORK
In this work, we perform first-of-its-kind measurements of on-
device training performance on commodity smartphones. The re-
sults lead us to several interesting findings, emphasizing that we
are at the dawn of “learning everywhere and anytime”. It calls for
more research efforts, in both theory and system aspects, to enable
such ubiquitous learning paradigm. Here we highlight some of the
promising future directions.
•Generating efficient operatorsWhile being the state-of-the-art
training library for edge devices, our experiments show that MNN’s
performance is still far from optima (Section 2.2 and Section 2.7).
The reason is that tunning the operators is both difficult and time-
consuming even for ML experts due to the variable batchsize and
the asymmetric multiprocessing feature on mobile SoCs. Since the
early release of TensorFlow Lite in 2017, we have witnessed the
emergence and continuously improved performance of (new) in-
ference engines for mobile CPU, GPU, DSP, and even NPUs. As
comparison, on-device training libraries like MNN are still at very
preliminary stage from the perspective of the open-sourced soft-
ware ecosystem. One potential solution to speed up or even skip
the labor-intensive tuning of NN operators is to leverage automatic
tensor compiler [5] to generate efficient operators for training.
• Memory optimizations The results in Section 2.3 show that,
constrained by the physical RAM and the memory allocation strate-
gies of OS, current mobile devices only allow a small batchsize
in training typical CNN models. Such a limitation may harm the
convergence performance (both accuracy and wall clock time).
Therefore, memory optimizations are needed to enable training
on large-enough batchsize. We may retrofit existing techniques in-
vented for datacenter GPUsmemory, e.g., memory swapping [9] and
checkpointing [6]. Those techniques, however, cannot be directly
applied as mobile SoCs have different architecture than datacenter-
scale GPUs (e.g., integrated memory for heterogeneous processors),
and they may impose high computation overhead mobile devices
cannot afford.
• Tuning system parameters As shown in Section 2.5, system
parameters like CPU cores and frequency opens rich tradeoffs for
on-device training performance, i.e., training time and energy con-
sumption. Both of these metrics play key role in designing an effi-
cient ubiquitous learning protocol. For example, in federated learn-
ing, many devices equipped with heterogeneous processors may
leverage different CPU frequencies to keep a synchronized pace

EMDL’21 , June 25, 2021, Virtual, WI, USA Dongqi Cai, Qipeng Wang, Yuanqiang Liu, et al.

while reduce the overall energy consumption. Choosing the opti-
mal configuration is challenging, as our experiments show that it
depends on model strucutre, batchsize, hardware specification and
status, etc.

ACKNOWLEDGMENTS
This work was supported by National Key R&D Program of China
under grant number 2020YFB1805500, the Fundamental Research
Funds for the Central Universities, and National Natural Science
Foundation of China under grant numbers 62032003, 61922017, and
61921003.

REFERENCES
[1] Federated learning: Collaborative machine learning without centralized training

data. https://ai.googleblog.com/2017/04/federated-learning-collaborative.html,
2017.

[2] How apple personalizes siri without hoovering up your data. https:
//www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-
federated-learning/, 2019.

[3] Deep learning for java. https://deeplearning4j.org/, 2021.
[4] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex

Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi,
H Brendan McMahan, et al. Towards federated learning at scale: System design.
arXiv preprint arXiv:1902.01046, 2019.

[5] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. {TVM}: An
automated end-to-end optimizing compiler for deep learning. In OSDI, pages
578–594, 2018.

[6] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets
with sublinear memory cost. arXiv preprint arXiv:1604.06174, 2016.

[7] Yansong Gao, Minki Kim, Sharif Abuadbba, Yeonjae Kim, Chandra Thapa,
Kyuyeon Kim, Seyit A Camtepe, Hyoungshick Kim, and Surya Nepal. End-
to-end evaluation of federated learning and split learning for internet of things.
arXiv preprint arXiv:2003.13376, 2020.

[8] Juncheng Gu, Mosharaf Chowdhury, Kang G Shin, Yibo Zhu, Myeongjae Jeon,
Junjie Qian, Hongqiang Liu, and Chuanxiong Guo. Tiresias: A {GPU} clus-
ter manager for distributed deep learning. In 16th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 19), pages 485–500, 2019.

[9] Chien-Chin Huang, Gu Jin, and Jinyang Li. Swapadvisor: Pushing deep learning
beyond the gpu memory limit via smart swapping. In ASPLOS, pages 1341–1355,
2020.

[10] Xiaotang Jiang, HuanWang, Yiliu Chen, Ziqi Wu, LichuanWang, Bin Zou, Yafeng
Yang, Zongyang Cui, Yu Cai, Tianhang Yu, et al. Mnn: A universal and efficient

inference engine. arXiv preprint arXiv:2002.12418, 2020.
[11] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi

Bennis, Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al. Advances and open problems in federated learning.
arXiv preprint arXiv:1912.04977, 2019.

[12] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep networks
from decentralized data. In Artificial Intelligence and Statistics, pages 1273–1282.
PMLR, 2017.

[13] Chaoyue Niu, FanWu, Shaojie Tang, Lifeng Hua, Rongfei Jia, Chengfei Lv, Zhihua
Wu, and Guihai Chen. Billion-scale federated learning on mobile clients: A sub-
model design with tunable privacy. In Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking, pages 1–14, 2020.

[14] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t decay
the learning rate, increase the batch size. arXiv preprint arXiv:1711.00489, 2017.

[15] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split
learning for health: Distributed deep learning without sharing raw patient data.
arXiv preprint arXiv:1812.00564, 2018.

[16] Manni Wang, Shaohua Ding, Ting Cao, Yunxin Liu, and Fengyuan Xu. Asymo:
scalable and efficient deep-learning inference on asymmetric mobile cpus. In
MobiCom, pages 215–228, 2021.

[17] Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix Xiaozhu Lin, Yunxin Liu, and
Xuanzhe Liu. A first look at deep learning apps on smartphones. In The World
Wide Web Conference, pages 2125–2136, 2019.

[18] Mengwei Xu, Yunxin Liu, and Xuanzhe Liu. A case for camera-as-a-service. IEEE
Pervasive Computing, 2021.

[19] Mengwei Xu, Feng Qian, Qiaozhu Mei, Kang Huang, and Xuanzhe Liu. Deeptype:
On-device deep learning for input personalization service with minimal privacy
concern. IMWUT, 2(4):1–26, 2018.

[20] Mengwei Xu, FengQian,Mengze Zhu, FeifanHuang, Saumay Pushp, andXuanzhe
Liu. Deepwear: Adaptive local offloading for on-wearable deep learning. IEEE
Transactions on Mobile Computing, 19(2):314–330, 2019.

[21] Mengwei Xu, Xiwen Zhang, Yunxin Liu, Gang Huang, Xuanzhe Liu, and Fe-
lix Xiaozhu Lin. Approximate query service on autonomous iot cameras. In
Proceedings of the 18th International Conference on Mobile Systems, Applications,
and Services, pages 191–205, 2020.

[22] Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu Lin, and Xuanzhe Liu.
Deepcache: Principled cache for mobile deep vision. In Proceedings of the 24th
Annual International Conference on Mobile Computing and Networking, pages
129–144, 2018.

[23] Chengxu Yang, QiPeng Wang, Mengwei Xu, Shangguang Wang, Kaigui Bian,
and Xuanzhe Liu. Heterogeneity-aware federated learning. arXiv preprint
arXiv:2006.06983, 2020.

[24] Hanyu Zhao, Zhenhua Han, Zhi Yang, Quanlu Zhang, Fan Yang, Lidong Zhou,
Mao Yang, Francis CM Lau, Yuqi Wang, Yifan Xiong, et al. Hived: Sharing a
{GPU} cluster for deep learning with guarantees. In 14th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 20), pages 515–532,
2020.

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-federated-learning/
https://www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-federated-learning/
https://www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-federated-learning/
https://deeplearning4j.org/

	Abstract
	1 Introduction
	2 Measurements
	2.1 Experiment setups
	2.2 Training time and breakdown
	2.3 Memory footprint
	2.4 Energy consumption
	2.5 Impacts of CPU parameters
	2.6 Thermal dynamics
	2.7 Mobile CPU vs. Mobile GPU

	3 Conclusions and Future Work
	References

