
ModelDiff: Testing-Based DNN Similarity Comparison for Model
Reuse Detection

Yuanchun Li
Microsoft Research

Beijing, China
Yuanchun.Li@microsoft.com

Ziqi Zhang
Peking University
Beijing, China

ziqi_zhang@pku.edu.cn

Bingyan Liu
Peking University
Beijing, China

lby_cs@pku.edu.cn

Ziyue Yang
Microsoft Research

Beijing, China
Ziyue.Yang@microsoft.com

Yunxin Liu
Institute for AI Industry Research

(AIR), Tsinghua University
Beijing, China

liuyunxin@air.tsinghua.edu.cn

ABSTRACT

The knowledge of a deep learning model may be transferred to

a student model, leading to intellectual property infringement or

vulnerability propagation. Detecting such knowledge reuse is non-

trivial because the suspect models may not be white-box accessible

and/or may serve different tasks. In this paper, we propose Mod-

elDiff, a testing-based approach to deep learning model similarity

comparison. Instead of directly comparing the weights, activations,

or outputs of two models, we compare their behavioral patterns

on the same set of test inputs. Specifically, the behavioral pattern

of a model is represented as a decision distance vector (DDV), in

which each element is the distance between the model’s reactions

to a pair of inputs. The knowledge similarity between two mod-

els is measured with the cosine similarity between their DDVs.

To evaluate ModelDiff, we created a benchmark that contains 144

pairs of models that cover most popular model reuse methods, in-

cluding transfer learning, model compression, and model stealing.

Our method achieved 91.7% correctness on the benchmark, which

demonstrates the effectiveness of using ModelDiff for model reuse

detection. A study on mobile deep learning apps has shown the

feasibility of ModelDiff on real-world models.

CCS CONCEPTS

· Security and privacy→ Software and application security; Digi-

tal rights management; · Software and its engineering→ Soft-

ware post-development issues.

KEYWORDS

Deep neural networks, similarity comparison, model reuse, intel-

lectual property, vulnerability propagation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA ’21, July 11ś17, 2021, Virtual, Denmark

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8459-9/21/07. . . $15.00
https://doi.org/10.1145/3460319.3464816

ACM Reference Format:

Yuanchun Li, Ziqi Zhang, Bingyan Liu, Ziyue Yang, and Yunxin Liu. 2021.

ModelDiff: Testing-Based DNN Similarity Comparison for Model Reuse De-

tection. In Proceedings of the 30th ACM SIGSOFT International Symposium on

Software Testing and Analysis (ISSTA ’21), July 11ś17, 2021, Virtual, Denmark.

ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3460319.3464816

1 INTRODUCTION

Deep learning models (i.e. deep neural networks, or DNNs for short)

are increasingly deployed into various applications for a wide range

of tasks. Due to the difficulty of building accurate and efficient

models from scratch, various model reuse techniques have been

proposed to help developers build models based on existing models.

The knowledge of an existing model can be transferred to new

models that are tailored for different application scenarios and/or

resource constraints. For example, transfer learning [56] can be

used to adapt the existing models trained for one task to solve other

similar tasks. Model compression techniques [27] can convert a

large model to a smaller one to deploy in resource-constrained

environments while reserving reasonable accuracy. Due to the

great convenience and remarkable performance, these techniques

are increasingly used by deep learning developers today.

However, the ability of knowledge transfer also leads to con-

cerns about intellectual property (IP) and vulnerability propagation.

First, a deep learning model is usually an important property for a

company given the difficulty of training it [10]. Reusing a model

without authorization or license compliance would violate the IP

right. Second, some pretrained models may have security defects

(such as adversarial vulnerability [67], backdoors [40, 44], etc.), and

the models based on them may inherit the defects [13, 76]. Similar

problems exist in traditional programs where the code may be pla-

giarized or reused, and software similarity analysis [26, 60, 61] is

one of the most popular techniques to address such problems.

Analyzing the similarity between deep learning models involves

three key challenges. First, the models under comparison, especially

the suspect models built upon pretrained models are usually not

white-box accessible, since many of them are deployed on a server

and provided to customers through inference APIs. Second, even if

the models are available for structure or weight comparison, the

structural similarity does not necessarily mean knowledge similar-

ity: Two unrelated DNNs may have identical or similar structures,

139

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3460319.3464816
https://doi.org/10.1145/3460319.3464816

ISSTA ’21, July 11ś17, 2021, Virtual, Denmark Yuanchun Li, Ziqi Zhang, Bingyan Liu, Ziyue Yang, and Yunxin Liu

Model f

Model g

Model h

0.9
0.9
0.1

0.9
0.8
0.1

0.1
0.9
0.8

What is the
distance
between

each pair of
examples?𝑥1𝑎 , 𝑥1𝑏𝑥2𝑎 , 𝑥2𝑏𝑥3𝑎 , 𝑥3𝑏

Similar

Not

similar

Test
questions

Each model’s
answer to the

questions

Model similarity
measured based
on the answers

Figure 1: An illustration of the idea of ModelDiff tomeasure

knowledge similarity between DNN models.

since they may use the same public state-of-the-art model architec-

ture (e.g. ResNet, MobileNet, etc.). Meanwhile, two closely related

DNNs may have significantly different structures and weights, for

example when one is generated from another through knowledge

distillation. Third, the models that contain common knowledge

may appear quite different since they may use the knowledge for

different tasks (e.g. an object detection model built upon an image

classification model through transfer learning).

In this paper, we propose ModelDiff, a testing-based approach to

DNN model similarity comparison. Instead of directly comparing

the graph structures and weights that may be unavailable or incom-

parable, we compare the decision patterns of the models based on

how they respond to the same set of test inputs. Measuring knowl-

edge similarity from the testing perspective directly solves the first

two challenges stated above since it only requires black-box access

to the suspect models and no comparison of the internal structures

is needed. However, due to the third challenge (the models may

belong to different tasks), the test outputs of different models are

not directly comparable. Thus we introduce a new data structure,

named decision distance vector (DDV), to represent the decision

logic of a model on the test inputs. Each value in a DDV is the

distance between the outputs of the model produced by two inputs.

The insight behind DDVs is that two models would group the test

inputs with a similar pattern if their decision boundaries are similar.

Since the size of a DDV is only related to the number of inputs

used to test the model, the DDVs generated with the same set of

samples are comparable across different models. As a result, the

knowledge similarity between DNNs can be measured based on the

distance between their DDVs. An illustration of the idea is shown

in Figure 1.

To detect model reuse, a key problem of ModelDiff is how to

generate the test inputs that can represent the unique decision

pattern of a model that is exclusively shared by the models built

upon it. Using normal samples as test inputs is ineffective because

the normal inputs are usually processed by the common-sense

knowledge that is shared across unrelated models. For example,

feeding a normal cat image to different image classifiers would lead

to similar outputs, although the classifiers might be trained with

completely different datasets and algorithms.

Inspired by prior work on adversarial attack transferability [13,

15, 32], we use both normal and adversarial inputs to construct the

test inputs. The insight is that the normal inputs and adversarial

inputs are processed by the normal and imperfect knowledge of

a model respectively, while the decision boundary of the model

can be characterized by the combination of normal and imperfect

knowledge. Specifically, given two models under comparison, one

of them is selected as the target model and another is the suspect

model. The test inputs in ModelDiff are generated based on a set of

normal samples (named seed inputs) that lie in the input distribution

of the target model. We find an adversarial input for each seed input

by maximizing the divergence between the model’s predictions

on adversarial and normal inputs and the diversity of the model

predictions produced by the test inputs. Each adversarial input

and the corresponding normal input are paired to compute DDVs

that depict the decision boundary precisely and completely. Such

DDVs can capture the similarity between teacher and student model

because the decision boundaries are transferred during model reuse.

To evaluate our approach, we created a benchmark named Mod-

elReuse. ModelReuse contains 114 models generated from large

pretrained models using various model reuse techniques. Based on

these models, we obtained 144 pairs of models that have reused

knowledge, including 84 direct reuses (one is generated from an-

other using a single model reuse method) and 60 combined reuses

(one is generated from another using a combination of transfer

learning and model compression). We evaluated ModelDiff by ex-

amining whether it can be applied to detect these reuses (feasibility)

and whether it can correctly compute higher similarity scores for

the model pairs with reused knowledge (correctness).

ModelDiff could support meaningful comparison for all model

pairs inModelReuse benchmark and achieved an overall correctness

of 91.7%, which outperformed both the white-box and black-box

baseline methods that we created based on weight, feature map,

and fingerprint comparison.

To better understand the knowledge similarity measured with

ModelDiff, we further analyzed the relation between the similarity

score and the model accuracy. The result shows that the similarity

score computed by ModelDiff is in general proportional to model

accuracy, i.e. a higher similarity between two models typically

means more useful knowledge of one model is utilized by another,

leading to higher test accuracy.

Finally, to examine whether ModelDiff can be used to measure

model similarity in the wild, we collected 35 TFLite models from

20,000 real-world Android apps in Google Play and compared them

with a popular pretrained model using ModelDiff. Our method

was able to handle these real-world black-box models, and the

knowledge similarities measured for these models were consistent

with our manual inspection based on the model file names.

This paper makes the following key contributions:

(1) To the best of our knowledge, this is the first work that

systematically discusses the problem of DNN model reuse

detection, where the student model and teacher model may

be heterogeneous, black-box, and serving different tasks.

140

ModelDiff: Testing-Based DNN Similarity Comparison for Model Reuse Detection ISSTA ’21, July 11ś17, 2021, Virtual, Denmark

(2) We introduce a benchmark named ModelReuse for model

reuse detection, which contains 144 models generated with

popular model reuse techniques with varying configurations.

(3) We propose ModelDiff, a testing-based method for model

similarity comparison. Our method achieved 91.7% correct-

ness on ModelReuse benchmark. Both the benchmark and

the tool will be released to the community.

2 BACKGROUND: DNN MODEL REUSE

Building an efficient and accurate DNN model from scratch is a

data-intensive and time-consuming task, thus it is common for

developers to build DNNs based on existing pretrained DNNs. This

sectionwill introduce transfer learning andmodel compression, two

widely-used techniques for adapting a DNNmodel to different tasks

and different resource constraints, and model stealing, a malicious

way to transfer the knowledge of a model. We call the models being

reused as teacher models and the models that inherent knowledge

from teacher models as student models.

2.1 Transfer Learning

Transfer learning aims to transfer the knowledge of a pretrained

teacher model to a student model used for a different but related

problem. For example, an image classifier that predicts the type

of animals in the input images can transfer knowledge to a more

specific classifier that predicts the breeds of cats, or to an object

detector that predicts the location of each animal in the image. The

reason why transfer learning is feasible is that DNNs trained for

similar tasks usually share a common feature extraction process. For

example, in computer vision, DNNs usually try to detect edges in

the earlier layers, shapes in the middle layer, and some task-specific

features in the later layers, thus the early and middle layers can

be shared for different tasks. Transfer learning was systematically

summarized by Pan et al. [56]. Today, transfer learning is widely

used in computer vision and natural language processing tasks

today thanks to the rapid advance of pretrained models in these

areas.

Themost straightforwardmethod to implement transfer learning

is fine-tuning. To fine-tune a model, developers first replace the

last layer of the teacher model with a customized layer whose

output shape is tailored for the developers’ task. Then the last few

layers in the new model are retrained with the (mostly small-scale)

training data in the application scenario. The weights in other

layers are fixed or slightly adjusted during retraining so that most

knowledge in the teacher model is preserved. Fine-tuning is also the

recommended way to implement transfer learning in the tutorials

of most deep learning frameworks.

2.2 Model Compression

Model compression is used to shrink a DNN model so that it can be

deployed to devices with limited storage memory and/or compu-

tation ability, such as smartphones, smart cameras, and vehicular

systems. The main techniques to implement model compression

include model quantization, pruning, and knowledge distillation.

Weight Quantization compresses model size and speeds up

inference by quantizing model weights to low-bit value [27]. A

common practice is to cut model weights from 32-bit floating-point

values to 8-bit integer values. Specifically, the floating-point weight

on one layer is scaled and shifted to an integer range and the

decimals are clipped. During inference, the weight is recovered by

the scale factor and shift factor and participates in the computation.

Model Pruning shrinks the model by slimming less-important

parts. There are two major pruning methods, including weight

pruning and channel pruning. Weight pruning [28] means to cut

weight connections by setting the weights to zero, which can lead

to higher computation speed with sparse matrix-based acceleration.

Channel pruning [39] refers to cut less-important output channels

of convolution layers to reduce the number of weights. Today,

the typical pipeline (also recommended in the tutorials of popular

deep learning frameworks) of model pruning involves three steps,

including training, weight pruning, and fine-tuning.

Knowledge Distillation [31] transfers model knowledge by

using the intermediate features and outputs of the teacher model

to train the student model. Ideally, the student model can achieve

comparable performance with the teacher model but with a much

smaller size and faster speed. Unlike transfer learning which trans-

fers knowledge from one task to another, knowledge distillation re-

quires the teacher and student to have the same label space (i.e. the

same task). Compared with other model compression methods,

knowledge distillation has the flexibility to customize the student

model architecture.

2.3 Model Stealing

An adversary can also steal the knowledge with only black-box

access to the teacher model [54, 71]. For example, most machine-

learning-as-a-service (MLaaS) platforms provide prediction APIs

instead of the whole models. An attacker can obtain training data

by continuously querying the prediction APIs, then use the training

data to train a new model. This method is similar to knowledge

distillation, while less effective in transferring knowledge since the

intermediate features are unused.

3 MOTIVATION AND GOAL

We are motivated by two issues related to model reuse, intellectual

property infringement and vulnerability propagation.

Intellectual Property Infringement. An accurate and effi-

cient DNN model is an important property of a company since

it involves much intellectual effort and computing resources. Train-

ing AlphaGo Zero from scratch costs around 35 million dollars in

computing power [11], and a recent NLP model is estimated to

cost about 4.6 million dollars to achieve the best accuracy [38]. The

total cost of inventing, building, and testing the models would be

much higher. Unauthorized reuse (e.g. using models protected by

non-commercial licenses for commercial purposes) or theft of such

models would be a severe violation of the IP rights [6, 25].

Vulnerability Propagation. DNN models are found to be vul-

nerable against various types of attacks, such as adversarial attacks

[22, 67] that can generate inputs that can lead to prediction errors

and backdoor attacks [23, 40, 44] that can control the output of

a model by injecting specific hidden logic into it. Recent studies

have found that these vulnerabilities are transferable [13], i.e. if the

teacher model has vulnerabilities that are known to attackers, the

student model may inherit the defective logic that can easily be

141

ISSTA ’21, July 11ś17, 2021, Virtual, Denmark Yuanchun Li, Ziqi Zhang, Bingyan Liu, Ziyue Yang, and Yunxin Liu

exploited by the attackers. The transferability can be further im-

proved by tailoring more advanced attacks [18, 32, 62, 73, 76]. Once

a pretrained model is found vulnerable or malicious, it is important

to find and notify the apps based on the problematic model.

The two issues are widely-discussed and well-understood in

traditional software. For example, it is well-known that reusing

third-party software and open-source libraries may be subject to

code reuse licenses, and reusing buggy or vulnerable libraries may

lead to severe security incidents. Code reuse is an important topic

in software engineering research, and code similarity analysis [60,

61] is one of the most widely-used techniques to deal with such

problems.

As DNN models are rapidly gaining popularity and increasingly

used as core components in many software applications, we an-

ticipate that the IP and vulnerability propagation issues of DNNs

may also become non-negligible in the future. This motivates us to

investigate the problem of DNN knowledge similarity comparison:

Definition 1. (DNNknowledge similarity comparison)Given

two DNN models, the goal of DNN knowledge similarity comparison

to compute a similarity score estimating how likely one model is built

upon another using model reuse techniques such as transfer learning,

model compression, etc.

We assume that models under comparison have the same input

shape and similar input statistical distribution (e.g. both models

accept RGB images as inputs), which is true for most model reuse

methods today. In fact, two models would unlikely to have similar

knowledge if they deal with different types of inputs.

We identify three related challenges in DNN similarity analysis.

(1) Black-box Access. Unlike the program code that can be

decompiled from the applications for comparison, DNNs,

especially the suspect student DNNs are usually hosted on a

server or compressed into an irreversible format for better

accuracy and efficiency. Thus utilizing the internal structures

or intermediate representations for comparison is sometimes

infeasible.

(2) Model Heterogeneity. Even if the models are white-box

available, a student model built with the teacher model may

prune parameters or completely change the structure during

transfer learning or compression. Meanwhile, the similar-

ity between model structures does not mean knowledge

similarity, e.g. some state-of-the-art model architectures are

open-sourced and used by different developers for diverse

tasks.

(3) Task Difference. Comparing models based on their black-

box inference APIs is also not straight-forward as the models

may serve for different tasks. For example, a student model

may reuse the knowledge of an animal classifier to classify

medical images via transfer learning. Thus directly compar-

ing the model outputs may not be feasible.

These challenges make it impossible to adopt most traditional

code similarity analysis techniques that are based on graph (control-

flow graph, data-flow graph, abstract syntax tree, etc.) comparison

for model similarity analysis.

Table 1: Definition of symbols commonly used in this paper.

Symbol Meaning

𝑓 , 𝑔, ℎ DNN models under comparison

𝑓 ∼ 𝑔 One of 𝑓 and 𝑔 is reused from another

𝑋, 𝑥𝑖 Input set 𝑋 with 𝑖-th element 𝑥𝑖
XP, 𝑥𝑖 , 𝑥

′
𝑖 A list of input pairs XP with 𝑖-th pair 𝑥𝑖 , 𝑥

′
𝑖

𝑓 (𝑥𝑖) Output of model 𝑓 produced by input 𝑥𝑖
sim(𝑓 , 𝑔) Knowledge similarity between model 𝑓 and 𝑔

dist(𝑎, 𝑏) Distance between vector 𝑎 and 𝑏

DDV𝑓 Decision distance vector of model 𝑓

4 OUR APPROACH: MODELDIFF

We propose a testing-based method named ModelDiff for DNN

knowledge similarity comparison. The key idea is to interpret the

knowledge of a DNN with its reaction to a set of test inputs that can

be represented as a decision distance vector (DDV). The similarity

between models can be measured by comparing their DDVs com-

puted for the same set of inputs. Instead of the model structures,

weights, and outputs that are difficult or unavailable to compare,

the DDVs of different models are uniform and easy to obtain, which

addresses the challenges mentioned in Section 3. The symbols that

will be commonly used in this paper are shown in Table 1.

4.1 Approach Overview

The pipeline of knowledge similarity analysis inModelDiff is shown

in Figure 2. The main components of ModelDiff include a test in-

put generator, a decision pattern analyzer, and a vector similarity

comparator.

Given twoDNNmodels 𝑓 and𝑔, the test input generator first gen-

erates several input examples 𝑋 that can trigger diverse reactions

in the models, then the input examples are grouped into pairs XP

fed into the 𝑓 and 𝑔 one by one. For each input example 𝑥 ∈ 𝑋 , we

record the responses of both models to the input as 𝑓 (𝑥) and 𝑔(𝑥).

The overall decision logic of a model is represented as a decision

distance vector (DDV𝑓 and DDV𝑔 for 𝑓 and 𝑔 respectively). Finally,

the similarity between the two models is measured by computing

the distance between their DDVs. The following subsections will

explain the key components in detail.

4.2 Test Input Generation

The goal of test input generation is to create an input dataset that

can capture the decision logic shared by DNN models that contain

reused knowledge.

Given two models 𝑓 and 𝑔 under comparison, we first select

one model (say 𝑓) as the target model, and another model (𝑔) is

the suspect model. In most model comparison scenarios, one of

the models is white-box accessible (e.g. the IP owner’s model or a

public pretrained model), which should be selected as the target

model. A random one is selected if both models are black-box.

We assume there is a set of normal input samples 𝑋𝑠𝑒𝑒𝑑 avail-

able for the target model 𝑓 , which is reasonable since the model’s

prediction APIs are available and the functionalities are usually

known.

142

ModelDiff: Testing-Based DNN Similarity Comparison for Model Reuse Detection ISSTA ’21, July 11ś17, 2021, Virtual, Denmark

Model f

Model g

Test Input
Generator

Responses of f

Responses of g

Feed Inputs

Decision Pattern
Analyzer

Decision Distance
Vector (DDV) of f

Decision Distance
Vector (DDV) of g

Analyze

Similarity
Comparator

Similarity
Score

Compare

Figure 2: The pipeline of ModelDiff to measure knowledge similarity between two models.

Directly using the normal inputs to extract the decision logic

of the models is problematic for our purpose, since the normal

inputs can only trigger normal knowledge that may be shared by

unrelated models. For example, suppose 𝑓 and 𝑔 are two irrelevant

image classifiers trained from scratch (i.e. there is no knowledge

reuse between them), 𝑥𝑐𝑎𝑡1 and 𝑥𝑐𝑎𝑡2 are two normal images of cat

and 𝑥𝑑𝑜𝑔 is a normal image of dog, then it is highly possible that:

dist(𝑓 (𝑥𝑐𝑎𝑡1), 𝑓 (𝑥𝑐𝑎𝑡2)) ≈ dist(𝑔(𝑥𝑐𝑎𝑡1), 𝑔(𝑥𝑐𝑎𝑡2)) ≈ 0

dist(𝑓 (𝑥𝑐𝑎𝑡1), 𝑓 (𝑥𝑑𝑜𝑔)) ≈ dist(𝑔(𝑥𝑐𝑎𝑡1), 𝑔(𝑥𝑑𝑜𝑔)) > 0

which means that the reaction patterns of 𝑓 and 𝑔 on the normal

inputs may be indistinguishable. Such similarity between the deci-

sion patterns is caused by the intrinsic features in the normal inputs

and the commonly-agreed labels of them - such knowledge of nor-

mal inputs is implied in the datasets and is obtained by different

(unrelated) models trained on the similar datasets.

Thus, to achieve our goal (model reuse detection), we ought to

generate test inputs that can trigger the model-specific knowledge

that is shared by models with knowledge reuse while not shared

by any other unrelated models.

Inspired by prior work on adversarial attacks [15, 62, 67] that

discovered the imperfect decision boundaries are one of the main

reasons for adversarial vulnerability, we attempt to address the

input generation problem from the decision boundary perspective.

We argue that the decision boundaries of models with reused

knowledge are similar. For example, in transfer learning, the deci-

sion boundary of the teacher model is copied into the student and

fine-tuned on the student dataset. The fine-tuning will not alter the

decision boundary significantly, instead, it only adjusts the decision

boundary to fit the student dataset. Similarly, other model reuse

methods like pruning and quantization are also designed to inherit

the decision boundary rather than changing it. Thus, if we can

precisely interpret the decision boundaries with the test inputs, it

will help identify the reusing relation between DNNs.

We combine adversarial inputs and normal inputs to create the

test inputs in ModelDiff. The intuition behind this idea is shown in

Figure 3. Specifically, for each normal input 𝑥𝑖 ∈ 𝑋 , we generate a

corresponding adversarial input 𝑥 ′𝑖 by adding small perturbation to

𝑥𝑖 . The normal input 𝑥𝑖 usually lies inside the decision boundary,

and the output produced by the normal input typically reflect the

general knowledge shared by similar but unrelated models. The

adversarial input 𝑥 ′𝑖 , on the other hand, lies around the decision

boundary and the corresponding output is mainly determined by

Decision

boundary

Normal

inputs

Adversarial

inputs

Figure 3: Illustration of the decision boundary depicted by

normal and adversarial input pairs.

the model-specific imperfect decision boundary. By using each

other as a reference, the decision distance between normal and

adversarial inputs can convey the knowledge exclusively shared

between reused models, i.e.

dist(𝑓 (𝑥𝑖), 𝑓 (𝑥
′
𝑖)) ≈ dist(𝑔(𝑥𝑖), 𝑔(𝑥

′
𝑖)), 𝑖 𝑓 𝑓 ∼ 𝑔

dist(𝑓 (𝑥𝑖), 𝑓 (𝑥
′
𝑖)) ≠ dist(𝑔(𝑥𝑖), 𝑔(𝑥

′
𝑖)), 𝑖 𝑓 𝑛𝑜𝑡 𝑓 ∼ 𝑔

To generate the adversarial inputs 𝑋 ′ = {𝑥 ′𝑖 , 𝑥
′
2, ...} from the

normal inputs𝑋 = {𝑥𝑖 , 𝑥2, ...}, we introduce two criteria to measure

the quality of generated test inputs, including intra-input distance

that represents the element-wise distance between the outputs

produced by 𝑋 and 𝑋 ′ and inter-input diversity that represents the

diversity of outputs produced by 𝑋 ′.

divergence𝑓 (𝑋
′, 𝑋) = mean

𝑖=0,1,..., |𝑋 |

{

| |𝑓 (𝑥 ′𝑖) − 𝑓 (𝑥𝑖) | |2
}

diversity𝑓 (𝑋
′) = mean

𝑥 ′
𝑖
,𝑥 ′

𝑗
∈𝑋 ′

{

| |𝑓 (𝑥 ′𝑖) − 𝑓 (𝑥 ′𝑗) | |2
}

The implication is two-fold: First, divergence𝑓 (𝑋
′, 𝑋) implies the

strength of the adversarial inputs, i.e. the decision boundary de-

picted by𝑋 and𝑋 ′ are more transferable if divergence is larger. Sec-

ond, diversity𝑓 (𝑋
′) indicates the coverage of behaviors produced

by the inputs. There are more standard neuron coverage metrics

proposed by prior work [46, 57], but we use the output-based crite-

ria diversity𝑓 (𝑋
′) since we don’t assume the access to the model

internal structure. The quality score of a set of adversarial inputs

𝑋 ′ is measured by:

𝑠𝑐𝑜𝑟𝑒 (𝑋 ′) = divergence𝑓 (𝑋
′, 𝑋) + 𝜆 diversity𝑓 (𝑋

′) (1)

where 𝜆 is a hyperparameter to balance the two criteria.

143

ISSTA ’21, July 11ś17, 2021, Virtual, Denmark Yuanchun Li, Ziqi Zhang, Bingyan Liu, Ziyue Yang, and Yunxin Liu

Algorithm 1: Black-box input generation in ModelDiff.

Input: 𝑓 : the target model, 𝑋 : the set of seed inputs, 𝜆, 𝜖 , 𝑁 :

hyperparameters to control divergence-diversity

balance, mutation strength, and number of iterations.

1 initialize inputs 𝑋 ′ ← 𝑋

2 initialize 𝑠𝑐𝑜𝑟𝑒 ← divergence𝑓 (𝑋,𝑋
′) + 𝜆 diversity𝑓 (𝑋

′)

3 for 𝑖 from 1 to 𝑁 do

4 compute divergence𝑓 (𝑋,𝑋
′) and diversity𝑓 (𝑋

′)

5 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 ← 𝐼𝑙𝑜𝑤_𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒
⋃

𝐼𝑙𝑜𝑤_𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦

6 𝑝𝑜𝑠 ← 𝑟𝑎𝑛𝑑𝑜𝑚_𝑝𝑖𝑐𝑘 (𝑋 [0] .𝑠ℎ𝑎𝑝𝑒)

7 compute 𝑋 ′
𝑙𝑒 𝑓 𝑡

by adding −𝜖 to 𝑋 ′[𝑖𝑛𝑑𝑖𝑐𝑒𝑠] [𝑝𝑜𝑠]

8 compute 𝑋 ′
𝑟𝑖𝑔ℎ𝑡

by adding 𝜖 to 𝑋 ′[𝑖𝑛𝑑𝑖𝑐𝑒𝑠] [𝑝𝑜𝑠]

9 compute 𝑠𝑐𝑜𝑟𝑒𝑙𝑒 𝑓 𝑡 and 𝑠𝑐𝑜𝑟𝑒𝑟𝑖𝑔ℎ𝑡 using 𝑋
′
𝑙𝑒 𝑓 𝑡

and 𝑋 ′
𝑟𝑖𝑔ℎ𝑡

10 if 𝑠𝑐𝑜𝑟𝑒𝑙𝑒 𝑓 𝑡 > 𝑠𝑐𝑜𝑟𝑒 and 𝑠𝑐𝑜𝑟𝑒𝑙𝑒 𝑓 𝑡 > 𝑠𝑐𝑜𝑟𝑒𝑟𝑖𝑔ℎ𝑡 then

11 𝑋 ′ ← 𝑋 ′
𝑙𝑒 𝑓 𝑡

, 𝑠𝑐𝑜𝑟𝑒 ← 𝑠𝑐𝑜𝑟𝑒𝑙𝑒 𝑓 𝑡

12 else if 𝑠𝑐𝑜𝑟𝑒𝑟𝑖𝑔ℎ𝑡 > 𝑠𝑐𝑜𝑟𝑒 then

13 𝑋 ′ ← 𝑋 ′
𝑟𝑖𝑔ℎ𝑡

, 𝑠𝑐𝑜𝑟𝑒 ← 𝑠𝑐𝑜𝑟𝑒𝑟𝑖𝑔ℎ𝑡

14 return the generated test inputs 𝑋 ′

The goal of input generation is to find:

𝑋 ′ = argmax
𝑋 ′

𝑠𝑐𝑜𝑟𝑒 (𝑋 ′) (2)

There are several ways to solve Equation 2. If 𝑓 is white-box

accessible, the adversarial inputs can be generated through gradient

ascent [48, 67]. Specifically, we select a target output 𝑓 (𝑋 ′) that

maximizes Equation 2 and use the PGD attack [48] to generate 𝑋 ′

that can minimize the loss between 𝑓 (𝑋 ′) and 𝑓 (𝑋).

In cases where the target model is also black-box, we introduce

a criteria-guided search algorithm (as shown in Algorithm 1) to

generate test inputs for the model 𝑓 by gradually mutating the seed

inputs towards to the goal. The algorithm is inspired by prior work

on mutation testing [33] and black-box adversarial attack [14, 24]

while tailored for our objective in terms of mutation index selection

and mutation operation.

Given a target model 𝑓 and a set of seed inputs 𝑋 , we generate

the test inputs through 𝑁 mutating iterations. In each iteration,

we select a subset of input samples (named mutation inputs) in

𝑋 that are the primary cause of low divergence and low diversity

(line 6). 𝐼𝑙𝑜𝑤_𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 are the indices of inputs where each 𝑗 ∈

𝐼𝑙𝑜𝑤_𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 satisfies | |𝑓 (𝑥 ′𝑗) − 𝑓 (𝑥 𝑗) | |2 < divergence𝑓 (𝑋,𝑋
′),

i.e. the divergence between 𝑥 𝑗 and 𝑥
′
𝑗 is lower than the average thus

𝑥 ′𝑗 should be mutated. To compute 𝐼𝑙𝑜𝑤_𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 , we first calculate

the distance | |𝑓 (𝑥 ′𝑗) − 𝑓 (𝑥
′
𝑘
) | |2 between each input pair 𝑥𝑘 , 𝑥𝑙 ∈ 𝑋

′.

The input pairs with smaller distances are more responsible for the

low diversity thus should be mutated. We set 𝐼𝑙𝑜𝑤_𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 to the

indices of the first 𝑟 × 𝑛 input pairs, where 𝑟 is a hyperparameter

to control the size of 𝐼𝑙𝑜𝑤_𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 . 𝑟 is set to 0.5 by default so that

𝐼𝑙𝑜𝑤_𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 will contain no more than 𝑛/2 indices.

After selecting the mutation inputs, we randomly pick a position

𝑝𝑜𝑠 in the input shape (e.g. a pixel in the input image) to perform

the mutation operation. We obtain two sets of inputs 𝑋 ′
𝑙𝑒 𝑓 𝑡

and

𝑋 ′
𝑟𝑖𝑔ℎ𝑡

that are generated by adding a small perturbation 𝜖 to or

subtracting 𝜖 from the mutation position 𝑝𝑜𝑠 in each mutation

input. We compute the scores for 𝑋 ′
𝑙𝑒 𝑓 𝑡

and 𝑋 ′
𝑟𝑖𝑔ℎ𝑡

respectively

with Equation 1 and update the test input set 𝑋 ′ if the score is

improved. The mutation process is repeated for 𝑁 iterations and

the final input set 𝑋 ′ is produced as the result of input generation.

4.3 Similarity Comparison

With the normal seed inputs 𝑋 and adversarial inputs 𝑋 ′ generated

in Section 4.2, we are able to compute the decision distance vectors

(DDVs) for the models under comparison.

First, the normal inputs𝑋 and adversarial inputs𝑋 ′ are combined

to form a list of input pairs XP = {(𝑥1, 𝑥
′
1), (𝑥2, 𝑥

′
2), ..., (𝑥𝑛, 𝑥

′
𝑛)},

where 𝑥𝑖 ∈ 𝑋 , 𝑥 ′𝑖 ∈ 𝑋 ′, and 𝑛 is the number of inputs in 𝑋 . The

decision distance vector (DDV) is defined as:

Definition 2. (Decision distance vector) Given a list of input

pairs XP, the decision distance vector (DDV) of a model 𝑓 is a float

vector DDV𝑓 (XP) =< 𝑣1, 𝑣2, ..., 𝑣𝑛 >, in which each element 𝑣𝑖 =

dist(𝑓 (𝑥𝑖), 𝑓 (𝑥
′
𝑖)) is the distance between the responses of 𝑓 produced

by 𝑥𝑖 and 𝑥
′
𝑖 .

For each input pair, DDV measures the distance between the

outputs produced by the two inputs. Since the outputs are produced

by the same model, the outputs 𝑓 (𝑥𝑖) and 𝑓 (𝑥 ′𝑖) are comparable.

The distance metric dist is the Cosine distance here if 𝑓 (𝑥𝑖) is a 1-D

array (e.g. when 𝑓 is a classifier), since Cosine distance is good at

comparing different scales of vectors.

A DDV basically captures the decision pattern of a model on

the test inputs. If two models are similar, they would have similar

patterns when measuring the distance between each pair of test

inputs. The concept is analogous to testing two people with the

same quiz questions, they would give similar answers if they have

common knowledge.

The length of DDV equals to the number of input pairs in XP

used to compute the DDV. By using the same set of profiling input

pairs to compute the DDVs for different models, we are able to

generate DDVs with fixed length and common semantics. Thus

the DDVs are comparable across different models, and the model

similarity can be measured through DDV comparison. Specifically,

sim(𝑓 , 𝑔) = 𝐶𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (DDV𝑓 ,DDV𝑔)

4.4 Threshold to Identify Model Reuse

The similarity score computed by ModelDiff is an indicator of how

likely a model is reused from another. However, in practice it is

usually desirable to have a threshold to decide whether it is a reuse.

Defining a global threshold is difficult because the range of sim-

ilarity scores may differ across various model types. Instead, we

opt for a data-driven model-specific threshold, i.e. when we want

to determine whether a suspect model 𝑔 is a reuse of the target

model 𝑓 , we first collect (or generate) several reference models

that are similar to 𝑓 but not built upon 𝑓 (e.g. models trained with

the same dataset of 𝑓 from scratch or built upon other pretrained

models). Then the threshold can be determined as the maximum

of the similarity scores obtained by the reference models. We will

show in Section 5.2 that such threshold is feasible and effective.

144

ModelDiff: Testing-Based DNN Similarity Comparison for Model Reuse Detection ISSTA ’21, July 11ś17, 2021, Virtual, Denmark

5 EVALUATION

Our evaluation aims to address the following research questions:

(1) What is the performance of ModelDiff? Is it able to correctly

detect different types of model reuses? (ğ5.2)

(2) How effective are the inputs generated with mutations in

the complete black-box setting? (ğ5.3)

(3) How do different configurations of ModelDiff affect the sim-

ilarity comparison performance? (ğ5.4)

(4) Can ModelDiff be applied to real-world deep learning apps

to analyze model similarity? (ğ5.5)

5.1 Experiment Setup

TheModelReuse Benchmark. To evaluate our method, we create

a benchmark named ModelReuse for model similarity comparison.

We use state-of-the-art image classification models and datasets

that commonly appear in transfer learning literature to construct

the benchmark. The source models to transfer knowledge from are

ResNet18 [30] and MobileNetV2 [64] pretrained on ImageNet [16],

and the datasets to transfer knowledge into are Oxford Flowers 102

(Flower102 for short) [52] and Stanford Dogs 120 (Dog120 for short)

[35]. The other models are generated from the base models using

different model reuse methods with varying configurations.

The complete list of models included in ModelReuse is shown

in Table 2. In total we have 114 models, including 2 pretrained

source models, 84 student models (12 transferred + 36 pruned + 12

quantized + 12 distilled + 12 stolen), and 28 retrained models. Each

of the 84 student models is built from one of the two pretrained

source models, and the 28 retrained models are trained from scratch.

Based on the models, we obtain 144 pairs of similar models

(i.e. model pairs in which one model reuses the knowledge of an-

other model, and should be detected as similarity), including 84

direct-reuse model pairs and 60 combined-reuse model pairs. Each

direct-reuse model pair is a student model with its direct teacher

model. Each of the 60 combined-reuse model pairs is generated with

a combination of two reuse methods (transfer learning + model

compression) from the corresponding source model. Such combined

reuse is common in real-world deep learning applications where

both the task and the model size are customized.

Baselines. To our best knowledge, there is no existing work

aimed to address the same problem as ours. However, there are

similar concepts discussed in related fields such as transfer learn-

ing, watermarking, etc. Thus we implement several baselines for

comparison:

(1) WeightComparemeasures the model similarity directly based

on weight comparison. Specifically, the similarity between

model 𝑓 and 𝑔 is calculated by
#identical layers between f and g
𝑚𝑖𝑛 (#layers of f, #layers of g)

,

where two layers are identical if and only if their structures

and weights are the same.

(2) FeatureCompare compares the feature maps produced by the

same set of 𝑁 normal inputs. Suppose 𝑓 𝑓 𝑒𝑎𝑡 (𝑥) is the feature

map of the last Conv layer in model 𝑓 produced by input 𝑥 ,

then the model similarity between 𝑓 and 𝑔 is calculated by

𝑚𝑒𝑎𝑛𝑁𝑖=1{𝑐𝑜𝑠𝑖𝑛𝑒 (𝑓
𝑓 𝑒𝑎𝑡 (𝑥𝑖), 𝑔

𝑓 𝑒𝑎𝑡 (𝑥𝑖))}.

(3) Fingerprinting computes a fingerprint of the teacher model

and check the fingerprint against other models to measure

similarity. The idea [6, 45] is to fingerprint a model 𝑓 with a

set of adversarial inputs𝑋 and their predicted label𝑌𝑓 . Given

a new model 𝑔, the IP ownership is verified by checking

whether𝑌𝑔 ≈ 𝑌𝑓 . We use the same inputs as ours to compute

fingerprints and calculate model similarity as 𝑠𝑖𝑚(𝑌𝑓 , 𝑌𝑔).

WeightCompare and FeatureCompare are while-box methods since

they require reading the weights or feature maps. Fingerprinting is

a black-box method like ours. We also considered other baselines

such as directly comparing the model outputs (OutputCompare), but

since Fingerprinting is also based on output comparison, it should

be able to represent the performance of OutputCompare.

Implementation and Test Environment. ModelDiff was im-

plemented with PyTorch 1.3 and Tensorflow 2.0 using Python 3.6.

Unless otherwise noted, we assume the target model is white-box

accessible and the suspect model is black-box, and the test inputs

are generated using gradient ascent. The number of test inputs

was set to 100 and the hyperparameters 𝜆, 𝜖 and 𝑁 were set to 0.5,

0.06, and 20,000 by default in our implementation. The benchmark

dataset was generated on a GPU cluster, and the experiments were

conducted on a Linux Server with 2 Intel Xeon CPUs and 2 GeForce

GTX 1080Ti GPUs. It takes around 18 seconds for ModelDiff to

compare a pair of models.

5.2 Correctness on ModelReuse Benchmark

We first ran ModelDiff and the baseline methods on the ModelReuse

benchmark to test their performance of similarity comparison.

For each of the 144 reused model pairs in ModelReuse, we gen-

erate reference model pairs by randomly replacing one of the two

models with an unrelated one (e.g. a model with different source

model or a retrained model). Thus each reused model pair has

71 reference model pairs. When evaluating a model comparison

method, each reused model pair and its corresponding reference

model pairs are fed into the comparator, and the following two

metrics are computed for each method: Feasibility. Whether the

comparator can be used to compare the reused model pair.Correct-

ness. Whether the comparator can distinguish the reused model

pair from reference model pairs (i.e. whether the similarity score of

the reused model pair is higher than all reference model pairs).

The results are shown in Table 3. First of all, ModelDiff achieved

100% feasibility, meaning that ModelDiff can measure the similarity

between all types of models, including those with different model

architectures or output spaces, while all other baselines are not

100% feasible. Specifically, the white-box approaches are unable to

process models with different architecture, which is a disadvantage

since the cross-structure distillation techniques [31] are gaining

popularity. Fingerprinting is not designed for models with different

underlying tasks, thus was unable to detect any reuse related to

transfer learning.

ModelDiff achieved overall correctness of 91.7%, outperforming

all the other baseline methods including the white-box approach

FeatureCompare. Specifically, ModelDiff was able to precisely iden-

tify the reused models generated with all model reuse methods

except for stealing. FeatureCompare is also precise on most normal

reuses. However, the qualitative differences between FeatureCom-

pare andModelDiff are notable. First, FeatureCompare is a white-box

approach because it requires access to the intermediate feature of

145

ISSTA ’21, July 11ś17, 2021, Virtual, Denmark Yuanchun Li, Ziqi Zhang, Bingyan Liu, Ziyue Yang, and Yunxin Liu

Table 2: The 114 models included in ModelReuse benchmark. The pretrained models are downloaded from the Internet. The

transferredmodels are built upon the pretrainedmodels. The pruned/quantized/distilled/stolenmodels are based on the trans-

ferred models. The retrained models are built from scratch. The ł#ž column is the number of models trained with the corre-

sponding method and configuration, and the łExamplesž column shows the names of some models in the category.

Method Configuration # How to generate Examples

Pre-training - 2
- Train ResNet18 and MobileNetV2 on ImageNet

dataset.

train(ResNet)

train(MbNet)

Transfer

learning

Tune 10% layer 4 - Transfer each source model to each target dataset

(Flower102 and Dog120), fine-tune the last 10% layers.

train(ResNet)-transfer(Flower102,0.1)

Tune 50% layers 4 - Transfer each source model to each target dataset,

fine-tune the last 50% layers.

train(MbNet)-transfer(Dog120,0.5)

Tune all layers 4 - Transfer each source model to each target dataset,

fine-tune all 100% layers.

train(MbNet)-transfer(Dog120,1.0)

Pruning Prune ratio 0.2 12 - Prune 20% weights in each transferred model and

fine-tune.

train(ResNet)-transfer(Dog120,0.5)-prune(0.2)

Prune ratio 0.5 12 - Prune 50% weights in each transferred model and

fine-tune.

train(MbNet)-transfer(Flower102,0.1)-prune(0.5)

Prune ratio 0.8 12 - Prune 80% weights in each transferred model and

fine-tune.

train(ResNet)-transfer(Dog120,1.0)-prune(0.8)

Quantization INT8 12 - Compress each transferred model using post-training

weight quantization.

train(ResNet)-transfer(Flower102,0.1)-quant

Knowledge

distillation

same arch 12 - Distill each transferred model to a target model with

the same architecture using feature distillation.

train(MbNet)-transfer(Dog120,0.5)-distill

Stealing different arch 12 - Use the output of each transferred model to train a

target model with different architecture.

train(ResNet)-transfer(Flower102,0.5)-steal(MbNet)

Retraining - 28

- Train ResNet18 and MobileNetV2 on each target

dataset from scratch. Use model reuse techniques to

generate more variations.

retrain(ResNet)

retrain(MbNet)-transfer(Flower102,0.5)

Table 3: The similarity comparison result of ModelDiff and other baselines on ModelReuse benchmark. Feas. and corr. are the

abbreviations of feasibility and correctness respectively.

Reuse method #Models
WeightCompare FeatureCompare Fingerprinting ModelDiff (ours)

Feas. Corr. Feas. Corr. Feas. Corr. Feas. Corr.

Direct reuse

Transfer - tune 10% 4 ✓ 100% ✓ 100% ✗ - ✓ 100%

Transfer - tune 50% 4 ✓ 100% ✓ 100% ✗ - ✓ 100%

Transfer - tune 100% 4 ✓ 0% ✓ 100% ✗ - ✓ 100%

Prune 20% 12 ✓ 0% ✓ 100% ✓ 100% ✓ 100%

Prune 50% 12 ✓ 0% ✓ 100% ✓ 100% ✓ 100%

Prune 80% 12 ✓ 0% ✓ 100% ✓ 66.7% ✓ 100%

Quantize 12 ✓ 100% ✓ 100% ✓ 100% ✓ 100%

Distill - same arch 12 ✓ 0% ✓ 50.0% ✓ 75.0% ✓ 100%

Steal - different arch 12 ✗ - ✗ - ✓ 0% ✓ 0%

Combined reuse

Transfer + prune 36 ✓ 0% ✓ 100% ✗ - ✓ 100%

Transfer + quantize 12 ✓ 66.7% ✓ 100% ✗ - ✓ 100%

Transfer + distill 12 ✓ 0% ✓ 50.0% ✗ - ✓ 100%

Overall 144 91.7% 21.2% 91.7% 90.9% 50.0% 73.6% 100% 91.7%

the compared models. Second, FeatureCompare assumes that the

compared models have a common feature layer for comparison.

However, finding the common layer between two models is non-

trivial or even impossible, especially if the suspect model is gener-

ated through knowledge distillation or modified purposely. Table 3

has showed that FeatureCompare was not as effective on models

generated with knowledge distillation that may lead to significant

internal feature change by retraining the weights from scratch.

The stolen models were difficult to detect with all methods. Steal-

ing a model is almost equivalent to retraining it, and the teacher

146

ModelDiff: Testing-Based DNN Similarity Comparison for Model Reuse Detection ISSTA ’21, July 11ś17, 2021, Virtual, Denmark

Figure 4: The similarity score distribution of different reuse

methods. Blue dots and red crosses are the similarity scores

obtained by reused models and irrelevant models respec-

tively.

Figure 5: Relation between model similarity and test accu-

racy on Flower102 dataset.

model is only used to generate a training dataset. How to identify

models generated with stealing remains a challenging problem.

Figure 4 shows the distribution of the similarity scores computed

by ModelDiff on the ResNet-based models. In most model reuse

cases that ModelDiff can correctly detect, we observe a clear gap

between the scores achieved by the reused model pairs and the

reference model pairs, meaning it’s easy to identify reused models

with a threshold. The gap is smaller when the models are generated

with knowledge distillation, which is intuitive since distillation

would reset the model parameters rather than reuse the parameters

from the teacher, thus less decision boundaries are inherited.

To further interpret the similarity scores, we visualized the re-

lation between each student model’s similarity score and its test

accuracy in Figure 5.We noticed that the studentmodels with higher

accuracy typically have higher similarity scores, because more use-

ful knowledge is transferred from the teacher. The test accuracy

of the models generated with stealing attack is lower, meaning

that they didn’t reuse much useful knowledge although they are

harder to detect. Surprisingly, although some models (pruning 80%

Figure 6: Progressive correctness achieved with different

numbers of input mutations in complete black-box setting.

Table 4: The relative correctness of ModelDiff under differ-

ent configurations as compared to the default setting.

Variation Relative correctness

Random noise as seed inputs 0.59

Less (10) or more (200) seed inputs 0.82, 1.00

Irrelevant images as seed inputs 1.00

All normal inputs 0.61

All adversarial inputs 0.86

Without diversity 0.75

weights in MobileNet) didn’t inherit much useful knowledge from

the teacher (thus had a poor accuracy), we are still able to correctly

detect them.

5.3 Complete Black-box Setting

In complete black-box settings, both models under comparison

are black-box. Thus the test inputs can only be generated with

mutation (Algorithm 1) rather than gradient ascent. To evaluate

the performance of ModelDiff in this setting, we used the two

pretrained models (ResNet18 and MobileNetV2) to generate test

inputs, and measured the correctness achieved by the generated

inputs every 1,000 iterations. The result is shown in Figure 6.

At first, the correctness improved quickly as more mutations

were performed, since the generated inputs became better at depict-

ing the decision boundaries. The correctness went to 70%-80% with

roughly 20,000 to 60,000 mutations (which took around 1-3 hours),

meaning that ModelDiff was able to measure model similarity with

a reasonable accuracy in complete black-box settings. However,

the correctness started to drop when the number of mutations was

larger, because too manymutations had made the adversarial inputs

more transferable to other irrelevant models. In practice, we should

limit the number of mutations to avoid such issues. We leave more

stable and effective black-box generation of adversarial inputs that

are only transferable to reused models as future work.

147

ISSTA ’21, July 11ś17, 2021, Virtual, Denmark Yuanchun Li, Ziqi Zhang, Bingyan Liu, Ziyue Yang, and Yunxin Liu

5.4 Configuration Analysis

Since the test inputs are critical in ModelDiff to precisely mea-

sure the knowledge similarity, we further analyzed how different

configurations of test inputs may affect the correctness on the 84

direct-reuse model pairs. The results are shown in Table 4.

The first three rows discuss the choice of seed inputs. The choice

of seed inputs is important for ModelDiff since using random noises

as the seed inputs or reducing the number of seed inputs would

lead to a correctness drop. However, ModelDiff performs well even

if the seed inputs are irrelevant images drawn from other datasets.

Thus ModelDiff only requires the inputs to comply with the input

distribution of the models under comparison.

The following two rows discuss how effective it is to measure

model similarity with normal inputs only or adversarial inputs

only. Both the two variations were unable to achieve performance

comparable to our default configuration (half adversarial inputs

and half normal inputs), which demonstrates the effectiveness of

ModelDiff in using adversarial inputs and corresponding normal

inputs together to interpret the models’ decision boundaries.

The last row discusses the usefulness of the diversity metric intro-

duced in Section 4.2. By removing the diversity of seed inputs and

disabling the diversity criterion in Equation 1, ModelDiff’s overall

correctness dropped by 25%. This demonstrates the usefulness of

considering test output diversity when generating test inputs.

5.5 A Study on Real-world Models

We further studied whether ModelDiff can be applied to measure

similarity for real-world models by testing it on models extracted

from real-world Android apps.

We selected MobileNet-V2 [64] pretrained on ImageNet [16] as

the source model due to its popularity in mobile apps. The pre-

trained MobileNet-V2 was obtained from Keras (https://keras.io/),

which is commonly used by app developers to download pretrained

models. The test inputs used by ModelDiff to measure knowledge

similarity were generated from the source model.

To obtain real-world models, we crawled 20,000 popular apps

from Google Play and looked for DNN models contained in those

apps. We focused on TFLite models since TFLite is the most popular

mobile deep learning framework today and .tflitemodel files are

self-contained and suitable for automated analysis. In the end, we

obtained 149 apps that contain at least a TFLite model. By excluding

the models whose input shape was different from the source model,

we obtained 35 models for comparison.

All the 35 models were successfully processed by ModelDiff to

compute DDVs with the test inputs. Since there is no ground truth

about whether each model is similar with the source model, we

were unable to compute the correctness like in Section 5.2. Instead,

we grouped the models into two categories based on whether the

model name contains łMobileNetž and examined whether the DDVs

computed for the models with łMobileNetž in name are closer

to the source model. The result shows that the DDVs of similar

models (e.g. the MobileNet-related models) are grouped close to

each other, which demonstrates the effectiveness of using DDVs to

measure model similarity. Such clustering ability of ModelDiff can

potentially be used to analyze model reuse relations at scale in an

unsupervised manner.

Figure 7: t-SNE visualization of the DDVs computed for 35

real-world mobile deep learning models.

6 RELATED WORK

6.1 Software Similarity Comparison

Our work is partly inspired by the line of research on code simi-

larity analysis, which has a long history since the emergence of

computer software [60, 61]. Existing work can be roughly classified

into metrics-based, text-based, graph-based, and semantic-based

approaches. The metrics-based approaches [5, 55] are mainly fo-

cused on computing some metrics from the software and measure

the similarity by comparing the metrics. Text-based approaches

[26, 42, 63, 65] view the code snippets as string sequences and com-

pare them using text similarity analysis techniques. Graph-based

approaches parse the programs into a uniform structure (such as ab-

stract syntax tree [4], control flow graph [7], program dependence

graph [37], UI transition graph [41], etc.) and identify isomorphism

between the trees or graphs. Some recent approaches consider the

semantics of code during similarity detection, with the help of

advanced NLP and ML techniques [43, 49, 75].

In cybersecurity research, binary code similarity comparison is

attractive due to its rich applications in patch analysis, plagiarism

detection, malware detection, and vulnerability search [17, 29, 50,

75]. Jiang et al. ’s work [34] is the closest to ours, which proposed

to compare the final states of two pieces of binary code given the

same input. If the pieces of code produce the same output, they are

considered equivalent. The same idea is later used in BLEX [19]

and MULTI-MH [58] for binary similarity detection. Although the

testing-based concept is similar to ours, we deal with DNN models

that may serve different tasks.

DNN model similarity has also been discussed in the AI and

machine learning field [36, 51, 59]. The main method is canonical

correlation analysis (CCA) and the primary purpose is to under-

stand the model internal representation rather than detect reuse.

Thus we did not compare with these approaches in this paper.

6.2 Model Intellectual Property Protection

To protect the IP right of a model, one way is to avoid model

exposure by encrypting it [21], putting it or part of it into enclaves

[70, 79], etc. Another way is to design mechanisms to enable model

148

ModelDiff: Testing-Based DNN Similarity Comparison for Model Reuse Detection ISSTA ’21, July 11ś17, 2021, Virtual, Denmark

IP violation detection. Here we focus on the detection approaches,

including watermarking and fingerprinting.

A watermark for a DNN model is usually a marker covertly

embedded into the model’s weight or output. Weight watermarks

[8, 9, 72] are usually trained into the weights using a parameter

regularizer and verified by directly comparing the weights of the

intermediate layers. Output watermarks [1, 12, 20] are generated

by training the DNN model to predict certain outputs (or activation

values) on specific inputs, like a backdoor injected into the model.

These approaches have in common that the models are overfitted

on certain inputs, i.e. the watermarks are additional knowledge

inserted into the model rather than the intrinsic knowledge of the

model. Recent studies have found that the watermarks are not

robust against distillation [66] and retraining [3].

Unlike watermarking, fingerprinting approaches are focused on

post hoc detection of model reuse. For example, IPGuard [6] is

based on the observation that a DNN classifier can be uniquely

represented by its classification boundary. Specifically, they find

N data points around the classification boundary and use the data

points together with the predicted labels as the fingerprint. A sus-

pect model is examined by feeding the N data points and comparing

the predicted labels. An IP violation is detected if the suspect model

produces outputs similar to the source model. Lukas et al. [45] in-

troduced the concept of conferrable inputs, i.e. targeted adversarial

inputs that are transferable to surrogate models while not transfer-

able to reference models that are trained independently. A major

limitation of these approaches is that the outputs of source and

suspect model must be in the same label space in order to verify

the ownership, which is not true since the suspect models may be

transferred to different tasks.

The DDV in this paper can also be viewed as a model fingerprint.

However, our method has more broad applicability since we do not

require the models to have the same output space.

6.3 Test Input Generation for DNN

Prior to our work, DNN testing has been widely discussed [77]. The

primary goal of test input generation for DNNs is to measure or

improve the robustness of models to adversarial inputs. For exam-

ple, DeepXplore [57] introduced the concept of neuron coverage,

i.e. the ratio of neurons activated by a set of inputs, to describe the

adequacy of the input set in revealing the possible behaviors of the

model. DeepGauge [46] then extended the concept by considering

more fine-grained criteria. Various searching, mutating, and fuzzing

techniques [53, 68, 74] have also been proposed to generate test

inputs that can maximize the coverage metrics.

There are also other purposes of DNN testing. For example,

Ma et al. [47] proposed to debug model bugs. Zhang et al. [78] and

Aggarwal et al. [2] attempted to test model fairness. Tian et al. [69]

are focused on testing the confusion and bias errors in DNNs. In

this work, DNN testing is used for model reuse detection.

7 LIMITATIONS AND FUTUREWORK

Other Reuse Methods. There are many novel model reuse meth-

ods and many variations of existing model reuse methods intro-

duced every day. It is impossible to test all of them, and we only

considered the most representative and widely-used ones.

Models generated with other reuse methods may bypass our

detection, especially if the student model developers are malicious

and aware of our method. How to deal with malicious model reuse

methods (e.g. model stealing attack) still remains a open problem.

More fundamentally, how to rigorously define DNN knowledge

reuse and detect any form of it is an important direction to explore.

Models with Different Input Shapes. Since our method re-

quires testing the models under comparison with the same set of

inputs, it is not able to measure similarity for models with different

input shapes. Fortunately, in most model reuse cases, the models

with different input shapes are unlikely to be built from each other.

Other Model Types. Currently ModelDiff is only tested on

CNN models, while we believe the idea of interpreting a precise

and complete decision boundary is general across different types

of models. In the future we will try to adapt our method to other

types of models such as RNN and Transformers.

Distinguishing Teacher and Student. ModelDiff currently

does not distinguish the direction of model reuse, i.e. we are unable

to know which is the teacher model and which is the student given

two models with knowledge similarity. The ability to detect the

reuse direction would be important when one needs to decide the

IP ownership among similar models.

8 CONCLUSION

This paper introduces a method named ModelDiff for measuring

knowledge similarity between DNN models. The idea is based on

the insight that models with similar knowledge would group a set

of inputs in similar patterns, and the decision boundaries of a model

depicted by normal and adversarial input pairs are transferable to

its student models. Experiments have shown that our method can

achieve a high correctness on our benchmark built with popular

model reuse techniques. The source code is available at https://

github.com/ylimit/ModelDiff.

ACKNOWLEDGMENTS

We thank all anonymous reviewers for the valuable comments. This

work is done while Yunxin Liu was working at Microsoft and Ziqi

Zhang was an intern at Microsoft. Ziqi Zhang contributed equally

as a co-primary author. Yuanchun Li is the corresponding author.

REFERENCES
[1] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet.

2018. Turning your weakness into a strength: Watermarking deep neural net-
works by backdooring. In 27th USENIX Security Symposium (USENIX Security 18).
1615ś1631.

[2] Aniya Aggarwal, Pranay Lohia, Seema Nagar, Kuntal Dey, and Diptikalyan Saha.
2019. Black box fairness testing of machine learning models. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 625ś635. https:
//doi.org/10.1145/3338906.3338937

[3] William Aiken, Hyoungshick Kim, Simon Woo, and Jungwoo Ryoo. 2021. Neural
network laundering: Removing black-box backdoor watermarks from deep neural
networks. Computers & Security 106 (2021), 102277. https://doi.org/10.1016/j.
cose.2021.102277

[4] Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine
Bier. 1998. Clone detection using abstract syntax trees. In Proceedings. Interna-
tional Conference on Software Maintenance (Cat. No. 98CB36272). IEEE, 368ś377.

[5] H. L. Berghel and D. L. Sallach. 1984. Measurements of Program Similarity in
Identical Task Environments. SIGPLAN Not. 19, 8 (Aug. 1984), 65ś76. https:
//doi.org/10.1145/988241.988245

149

https://github.com/ylimit/ModelDiff
https://github.com/ylimit/ModelDiff
https://doi.org/10.1145/3338906.3338937
https://doi.org/10.1145/3338906.3338937
https://doi.org/10.1016/j.cose.2021.102277
https://doi.org/10.1016/j.cose.2021.102277
https://doi.org/10.1145/988241.988245
https://doi.org/10.1145/988241.988245

ISSTA ’21, July 11ś17, 2021, Virtual, Denmark Yuanchun Li, Ziqi Zhang, Bingyan Liu, Ziyue Yang, and Yunxin Liu

[6] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2019. IPGuard: Protect-
ing the Intellectual Property of Deep Neural Networks via Fingerprinting the
Classification Boundary. arXiv preprint arXiv:1910.12903 (2019).

[7] Dong-Kyu Chae, Jiwoon Ha, Sang-Wook Kim, BooJoong Kang, and Eul Gyu Im.
2013. Software Plagiarism Detection: A Graph-Based Approach. In Proceedings of
the 22nd ACM International Conference on Information & Knowledge Management
(San Francisco, California, USA) (CIKM ’13). Association for Computing Machin-
ery, New York, NY, USA, 1577ś1580. https://doi.org/10.1145/2505515.2507848

[8] Huili Chen, Cheng Fu, Bita Darvish Rouhani, Jishen Zhao, and Farinaz Koushanfar.
2019. DeepAttest: An end-to-end attestation framework for deep neural networks.
In 2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 487ś498. https://doi.org/10.1145/3307650.3322251

[9] Huili Chen, Bita Darvish Rouhani, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar.
2019. Deepmarks: A secure fingerprinting framework for digital rights manage-
ment of deep learning models. In Proceedings of the 2019 on International Confer-
ence on Multimedia Retrieval. 105ś113. https://doi.org/10.1145/3323873.3325042

[10] Cody Coleman, Deepak Narayanan, Daniel Kang, Tian Zhao, Jian Zhang, Luigi
Nardi, Peter Bailis, Kunle Olukotun, Chris Ré, and Matei Zaharia. 2017. Dawn-
bench: An end-to-end deep learning benchmark and competition. Training 100,
101 (2017), 102.

[11] Dansplaining. 2018. How much did AlphaGo Zero cost? https://www.yuzeh.
com/data/agz-cost.html.

[12] Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. 2019. DeepSigns: An
end-to-end watermarking framework for ownership protection of deep neural
networks. In Proceedings of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems. 485ś497.
https://doi.org/10.1145/3297858.3304051

[13] Todor Davchev, Timos Korres, Stathi Fotiadis, Nick Antonopoulos, and Subra-
manian Ramamoorthy. 2019. An empirical evaluation of adversarial robustness
under transfer learning. In ICML workshop on understanding and improving gen-
eralization in deep learning.

[14] Samet Demir, Hasan Ferit Eniser, and Alper Sen. 2019. DeepSmartFuzzer: Reward
Guided Test Generation For Deep Learning. arXiv preprint arXiv:1911.10621
(2019).

[15] Ambra Demontis, Marco Melis, Maura Pintor, Matthew Jagielski, Battista Biggio,
Alina Oprea, Cristina Nita-Rotaru, and Fabio Roli. 2019. Why do adversarial
attacks transfer? explaining transferability of evasion and poisoning attacks. In
28th USENIX Security Symposium (USENIX Security 19). 321ś338.

[16] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Ima-
genet: A large-scale hierarchical image database. In IEEE conference on computer
vision and pattern recognition. IEEE, 248ś255. https://doi.org/10.1109/CVPR.2009.
5206848

[17] Steven HH Ding, Benjamin CM Fung, and Philippe Charland. 2019. Asm2vec:
Boosting static representation robustness for binary clone search against code
obfuscation and compiler optimization. In 2019 IEEE Symposium on Security and
Privacy (SP). IEEE, 472ś489. https://doi.org/10.1109/SP.2019.00003

[18] Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. 2019. Evading Defenses
to Transferable Adversarial Examples by Translation-Invariant Attacks. In IEEE
conference on computer vision and pattern recognition (CVPR). Computer Vision
Foundation / IEEE, 4312ś4321. https://doi.org/10.1109/CVPR.2019.00444

[19] Manuel Egele, Maverick Woo, Peter Chapman, and David Brumley. 2014. Blanket
execution: Dynamic similarity testing for program binaries and components. In
23rd USENIX Security Symposium (USENIX Security 14). 303ś317.

[20] Lixin Fan, Kam Woh Ng, and Chee Seng Chan. 2019. Rethinking deep neural
network ownership verification: Embedding passports to defeat ambiguity attacks.
In Advances in Neural Information Processing Systems. 4714ś4723.

[21] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy. In International Conference on Machine
Learning. PMLR, 201ś210. https://doi.org/10.5555/3045390.3045413

[22] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[23] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. Badnets: Identifying
vulnerabilities in the machine learning model supply chain. arXiv preprint
arXiv:1708.06733 (2017).

[24] Chuan Guo, Jacob R Gardner, Yurong You, Andrew Gordon Wilson, and Kil-
ian Q Weinberger. 2019. Simple black-box adversarial attacks. arXiv preprint
arXiv:1905.07121 (2019).

[25] Jia Guo and Miodrag Potkonjak. 2018. Watermarking deep neural networks for
embedded systems. In 2018 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). IEEE, 1ś8. https://doi.org/10.1145/3240765.3240862

[26] Yao Guo, Yuanchun Li, Ziyue Yang, and Xiangqun Chen. 2018. What’s inside
My App? Understanding Feature Redundancy in Mobile Apps. In Proceedings
of the 26th Conference on Program Comprehension (Gothenburg, Sweden) (ICPC
’18). Association for Computing Machinery, New York, NY, USA, 266ś276. https:
//doi.org/10.1145/3196321.3196329

[27] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.

arXiv preprint arXiv:1510.00149 (2015).
[28] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights

and connections for efficient neural network. In Advances in neural information
processing systems. 1135ś1143.

[29] Irfan Ul Haq and Juan Caballero. 2019. A Survey of Binary Code Similarity. arXiv
preprint arXiv:1909.11424 (2019).

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770ś778.

[31] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

[32] Qian Huang, Isay Katsman, Horace He, Zeqi Gu, Serge Belongie, and Ser-Nam
Lim. 2019. Enhancing adversarial example transferability with an intermediate
level attack. In Proceedings of the IEEE International Conference on Computer
Vision. 4733ś4742. https://doi.org/10.1109/ICCV.2019.00483

[33] Yue Jia and Mark Harman. 2010. An analysis and survey of the development of
mutation testing. IEEE transactions on software engineering 37, 5 (2010), 649ś678.
https://doi.org/10.1109/TSE.2010.62

[34] Lingxiao Jiang and Zhendong Su. 2009. Automatic Mining of Functionally Equiva-
lent Code Fragments via Random Testing (ISSTA ’09). Association for Computing
Machinery, New York, NY, USA, 81ś92. https://doi.org/10.1145/1572272.1572283

[35] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Li Fei-Fei. 2011.
Novel Dataset for Fine-Grained Image Categorization. In First Workshop on Fine-
Grained Visual Categorization, IEEE Conference on Computer Vision and Pattern
Recognition. Colorado Springs, CO.

[36] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton.
2019. Similarity of neural network representations revisited. arXiv preprint
arXiv:1905.00414 (2019).

[37] Jens Krinke. 2001. Identifying similar code with program dependence graphs. In
Proceedings Eighth Working Conference on Reverse Engineering. IEEE, 301ś309.

[38] Chuan Li. 2020. OpenAI’s GPT-3 Language Model: A Technical Overview. https:
//lambdalabs.com/blog/demystifying-gpt-3/.

[39] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. 2016.
Pruning filters for efficient ConvNets. arXiv preprint arXiv:1608.08710 (2016).

[40] Yuanchun Li, Jiayi Hua, Haoyu Wang, Chunyang Chen, and Yunxin Liu. 2021.
DeepPayload: Black-box Backdoor Attack on Deep Learning Models through
Neural Payload Injection. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 263ś274. https://doi.org/10.1109/ICSE43902.
2021.00035

[41] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. DroidBot: a
lightweight UI-Guided test input generator for android. In 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-C). 23ś26.
https://doi.org/10.1109/ICSE-C.2017.8

[42] Zhenmin Li, Shan Lu, SuvdaMyagmar, and Yuanyuan Zhou. 2006. CP-Miner: Find-
ing copy-paste and related bugs in large-scale software code. IEEE Transactions on
software Engineering 32, 3 (2006), 176ś192. https://doi.org/10.1109/TSE.2006.28

[43] Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li, Feng Li, Aihua Piao, and
Wei Zou. 2018. 𝛼diff: cross-version binary code similarity detection with dnn. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. 667ś678. https://doi.org/10.1145/3238147.3238199

[44] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, WeihangWang,
and Xiangyu Zhang. 2018. Trojaning Attack on Neural Networks. In 25th Annual
Network and Distributed System Security Symposium (NDSS). 18ś221.

[45] Nils Lukas, Yuxuan Zhang, and Florian Kerschbaum. 2019. Deep Neural Net-
work Fingerprinting by Conferrable Adversarial Examples. arXiv preprint
arXiv:1912.00888 (2019).

[46] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chun-
yang Chen, Ting Su, Li Li, Yang Liu, et al. 2018. Deepgauge: Multi-granularity
testing criteria for deep learning systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. 120ś131. https:
//doi.org/10.1145/3238147.3238202

[47] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama.
2018. MODE: automated neural network model debugging via state differential
analysis and input selection. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 175ś186. https://doi.org/10.1145/3236024.3236082

[48] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2017. Towards deep learningmodels resistant to adversarial attacks.
arXiv preprint arXiv:1706.06083 (2017).

[49] Collin McMillan, Mark Grechanik, and Denys Poshyvanyk. 2012. Detecting
similar software applications. In 2012 34th International Conference on Software
Engineering (ICSE). IEEE, 364ś374. https://doi.org/10.1109/ICSE.2012.6227178

[50] Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu. 2017. Binsim: Trace-
based semantic binary diffing via system call sliced segment equivalence checking.
In 26th USENIX Security Symposium (USENIX Security 17). 253ś270.

[51] Ari Morcos, Maithra Raghu, and Samy Bengio. 2018. Insights on representational
similarity in neural networks with canonical correlation. In Advances in Neural
Information Processing Systems. 5727ś5736.

150

https://doi.org/10.1145/2505515.2507848
https://doi.org/10.1145/3307650.3322251
https://doi.org/10.1145/3323873.3325042
https://www.yuzeh.com/data/agz-cost.html
https://www.yuzeh.com/data/agz-cost.html
https://doi.org/10.1145/3297858.3304051
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/SP.2019.00003
https://doi.org/10.1109/CVPR.2019.00444
https://doi.org/10.5555/3045390.3045413
https://doi.org/10.1145/3240765.3240862
https://doi.org/10.1145/3196321.3196329
https://doi.org/10.1145/3196321.3196329
https://doi.org/10.1109/ICCV.2019.00483
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1145/1572272.1572283
https://lambdalabs.com/blog/demystifying-gpt-3/
https://lambdalabs.com/blog/demystifying-gpt-3/
https://doi.org/10.1109/ICSE43902.2021.00035
https://doi.org/10.1109/ICSE43902.2021.00035
https://doi.org/10.1109/ICSE-C.2017.8
https://doi.org/10.1109/TSE.2006.28
https://doi.org/10.1145/3238147.3238199
https://doi.org/10.1145/3238147.3238202
https://doi.org/10.1145/3238147.3238202
https://doi.org/10.1145/3236024.3236082
https://doi.org/10.1109/ICSE.2012.6227178

ModelDiff: Testing-Based DNN Similarity Comparison for Model Reuse Detection ISSTA ’21, July 11ś17, 2021, Virtual, Denmark

[52] Maria-Elena Nilsback and Andrew Zisserman. 2008. Automated Flower Classifi-
cation over a Large Number of Classes. In Indian Conference on Computer Vision,
Graphics and Image Processing.

[53] Augustus Odena, Catherine Olsson, David Andersen, and Ian Goodfellow. 2019.
Tensorfuzz: Debugging neural networks with coverage-guided fuzzing. In Inter-
national Conference on Machine Learning. 4901ś4911.

[54] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. 2019. Knockoff nets:
Stealing functionality of black-box models. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 4954ś4963. https://doi.org/10.1109/
CVPR.2019.00509

[55] Karl J Ottenstein. 1976. An algorithmic approach to the detection and prevention
of plagiarism. ACM Sigcse Bulletin 8, 4 (1976), 30ś41.

[56] Sinno Jialin Pan and Qiang Yang. 2009. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering 22, 10 (2009), 1345ś1359. https:
//doi.org/10.1109/TKDE.2009.191

[57] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Auto-
mated whitebox testing of deep learning systems. In Proceedings of the 26th Sym-
posium on Operating Systems Principles. 1ś18. https://doi.org/10.1145/3132747.
3132785

[58] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and Thorsten
Holz. 2015. Cross-architecture bug search in binary executables. In 2015 IEEE
Symposium on Security and Privacy. IEEE, 709ś724. https://doi.org/10.1109/SP.
2015.49

[59] Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. 2017.
Svcca: Singular vector canonical correlation analysis for deep learning dynamics
and interpretability. In Advances in Neural Information Processing Systems. 6076ś
6085.

[60] Chaiyong Ragkhitwetsagul, Jens Krinke, and David Clark. 2018. A comparison of
code similarity analysers. Empirical Software Engineering 23, 4 (2018), 2464ś2519.

[61] Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. 2013. Software clone
detection: A systematic review. Information and Software Technology 55, 7 (2013),
1165ś1199.

[62] Shahbaz Rezaei and Xin Liu. 2019. A Target-Agnostic Attack on Deep Models:
Exploiting Security Vulnerabilities of Transfer Learning. CoRR abs/1904.04334
(2019).

[63] Chanchal K Roy and James R Cordy. 2008. NICAD: Accurate detection of near-
miss intentional clones using flexible pretty-printing and code normalization. In
2008 16th IEEE international conference on program comprehension. IEEE, 172ś181.

[64] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
4510ś4520. https://doi.org/10.1109/CVPR.2018.00474

[65] Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. 2003. Winnowing: local
algorithms for document fingerprinting. In Proceedings of the 2003 ACM SIGMOD
international conference on Management of data. 76ś85. https://doi.org/10.1145/
872757.872770

[66] Masoumeh Shafieinejad, Jiaqi Wang, Nils Lukas, Xinda Li, and Florian Ker-
schbaum. 2019. On the robustness of the backdoor-based watermarking in
deep neural networks. arXiv preprint arXiv:1906.07745 (2019).

[67] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199 (2013).

[68] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated
testing of deep-neural-network-driven autonomous cars. In Proceedings of the
40th International Conference on Software Engineering. 303ś314. https://doi.org/
10.1145/3180155.3180220

[69] Yuchi Tian, Ziyuan Zhong, Vicente Ordonez, Gail Kaiser, and Baishakhi Ray.
2019. Testing DNN Image Classifiers for Confusion & Bias Errors. arXiv preprint
arXiv:1905.07831 (2019).

[70] Florian Tramer and Dan Boneh. 2018. Slalom: Fast, Verifiable and Private Exe-
cution of Neural Networks in Trusted Hardware. In International Conference on
Learning Representations (ICLR).

[71] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
2016. Stealing Machine Learning Models via Prediction APIs. In 25th USENIX
Security Symposium (USENIX Security 16). USENIX Association, Austin, TX, 601ś
618.

[72] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. 2017.
Embedding watermarks into deep neural networks. In Proceedings of the 2017
ACM on International Conference on Multimedia Retrieval. 269ś277. https://doi.
org/10.1145/3078971.3078974

[73] Bolun Wang, Yuanshun Yao, Bimal Viswanath, Haitao Zheng, and Ben Y Zhao.
2018. With great training comes great vulnerability: Practical attacks against
transfer learning. In 27th USENIX Security Symposium (USENIX Security 18).
1281ś1297.

[74] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun
Zhao, Bo Li, Jianxiong Yin, and Simon See. 2019. Deephunter: A coverage-guided
fuzz testing framework for deep neural networks. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 146ś157.
https://doi.org/10.1145/3293882.3330579

[75] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017.
Neural network-based graph embedding for cross-platform binary code similarity
detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. 363ś376. https://doi.org/10.1145/3133956.3134018

[76] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y Zhao. 2019. Latent
backdoor attacks on deep neural networks. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security. 2041ś2055. https:
//doi.org/10.1145/3319535.3354209

[77] Jie M Zhang, Mark Harman, Lei Ma, and Yang Liu. 2020. Machine learning testing:
Survey, landscapes and horizons. IEEE Transactions on Software Engineering (2020).
https://doi.org/10.1109/TSE.2019.2962027

[78] Peixin Zhang, Jingyi Wang, Jun Sun, Guoliang Dong, Xinyu Wang, Xingen Wang,
Jin Song Dong, and Dai Ting. 2020. White-box fairness testing through adversarial
sampling. (2020).

[79] Ziqi Zhang, Yuanchun Li, Yao Guo, Xiangqun Chen, and Yunxin Liu. 2020.
Dynamic Slicing for Deep Neural Networks. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Virtual Event, USA) (ESEC/FSE
2020). Association for Computing Machinery, New York, NY, USA, 838ś850.
https://doi.org/10.1145/3368089.3409676

151

https://doi.org/10.1109/CVPR.2019.00509
https://doi.org/10.1109/CVPR.2019.00509
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1109/SP.2015.49
https://doi.org/10.1109/SP.2015.49
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1145/872757.872770
https://doi.org/10.1145/872757.872770
https://doi.org/10.1145/3180155.3180220
https://doi.org/10.1145/3180155.3180220
https://doi.org/10.1145/3078971.3078974
https://doi.org/10.1145/3078971.3078974
https://doi.org/10.1145/3293882.3330579
https://doi.org/10.1145/3133956.3134018
https://doi.org/10.1145/3319535.3354209
https://doi.org/10.1145/3319535.3354209
https://doi.org/10.1109/TSE.2019.2962027
https://doi.org/10.1145/3368089.3409676

	Abstract
	1 Introduction
	2 Background: DNN Model Reuse
	2.1 Transfer Learning
	2.2 Model Compression
	2.3 Model Stealing

	3 Motivation and Goal
	4 Our Approach: ModelDiff
	4.1 Approach Overview
	4.2 Test Input Generation
	4.3 Similarity Comparison
	4.4 Threshold to Identify Model Reuse

	5 Evaluation
	5.1 Experiment Setup
	5.2 Correctness on ModelReuse Benchmark
	5.3 Complete Black-box Setting
	5.4 Configuration Analysis
	5.5 A Study on Real-world Models

	6 Related work
	6.1 Software Similarity Comparison
	6.2 Model Intellectual Property Protection
	6.3 Test Input Generation for DNN

	7 Limitations and Future Work
	8 Conclusion
	References

