ParallelFusion: Towards Maximum Utilization of Mobile GPU
for DNN Inference

Jingyu Lee”
jingyu.lee@hcs.snu.ac.kr
Seoul National University

Seoul, Korea

Yunxin Liu”
liuyunxin@air.tsinghua.edu.cn
Institute for Al Industry Research
(AIR), Tsinghua University

Youngki Lee
youngkilee@snu.ac.kr
Seoul National University
Seoul, Korea

Beijing, China

ABSTRACT

Mobile GPUs are extremely under-utilized for DNN computations
across different mobile deep learning frameworks and multiple
DNNs with various complexities. We explore the feasibility of batch-
ing and it improves the throughput by up to 35%. However, real-time
applications in mobile have a limited amount of requests to get a
benefit from batching. To tackle the challenge, we present Paral-
lelFusion technique that enables concurrent execution of heteroge-
neous operators to further utilize the mobile GPU. We implemented
ParallelFusion over the MNN framework and evaluated on 6 state-
of-the-art DNNs. Our evaluation shows that Parallel Fusion achieves
up to 195% to 218% throughput with fused execution of 2 and 3
operators compared to single DNN inference.

CCS CONCEPTS

« Human-centered computing — Ubiquitous and mobile com-

puting.

KEYWORDS
mobile GPU, mobile deep learning, under utilization, parallel fusion

ACM Reference Format:

Jingyu Lee, Yunxin Liu, and Youngki Lee. 2021. ParallelFusion: Towards
Maximum Utilization of Mobile GPU for DNN Inference. In 5th International
Workshop on Embedded and Mobile Deep Learning (EMDL °21), June 25, 2021,
Virtual, WI, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3469116.3470014

1 INTRODUCTION

Emerging mobile applications require real-time, continuous exe-
cution of deep neural networks (DNNs) on resource-constrained
mobile processors. For example, future augmented reality and aug-
mented virtuality applications execute multiple DNNs over the
streaming first-person-view video for accurate physical scene anal-
ysis (e.g., surface/object/face detection), photo-realistic virtual ob-
ject generation, and user interaction (e.g., hand tracking) [19, 20].
Besides, they need to run at the 15-30 ms latency for an immersive
user experience [3].

Mobile GPU is the most commonly available accelerator for
commodity devices. It has been widely used for on-device DNN
inferences. However, its utilization for various DNN tasks has not

“This work was done in part when the authors were with Microsoft Research as an
intern or a principal researcher.

EMDL °21, June 25, 2021, Virtual, WI, USA
2021. ACM ISBN 978-1-4503-8597-8/21/06...$15.00
https://doi.org/10.1145/3469116.3470014

EThroughput Theoretical Limitation
1,500
wv
8 1,000
-
w500
o 38 93 109 62 67 a1
0 —_— =
Deeplab-V3 Inception-V3 ResNet-V2 V1 i V1 il V2
(a) Average throughput of DNN inference.
30% = B ALU Utilization @ LSU Utilization
21% 20%
20% 14% 16% 7%
% 10%
T =
0%
Deeplab-V3 Inception-V3 ResNet-V2 V1 ileNet-V1 ileNet-v2

(b) Average utilization of arithmetic logic unit and load-store unit.

Figure 1: Utilization of Mobile GPU in DNN Inference (MNN
over Qualcomm Adreno 650 - Samsung Galaxy S20).

been thoroughly explored. A rich body of prior work attempts to im-
prove the efficiency of DNN execution using GPUs (e.g., optimizing
convolution operations and matrix multiplications and combining
adjacent operators [2, 5]), but they have been mainly studied in the
context of desktop-scale GPUs. A recent study reports the under-
utilization of mobile GPU on DNN tasks [10], but focus on single
DNN execution.

In this paper, we first report our interesting observation that
mobile GPUs are extremely under-utilized for DNN inference tasks.
In particular, average ALU (Arithmetic Logic Unit) and LSU (Load
Store Unit) utilization were under 18% and 7%, respectively, for
six different state-of-the-art DNN models (See Figure 1 and Table
1). This phenomenon has been observed across different mobile
deep learning frameworks [5, 10, 11] and DNN models with varying
complexity, requiring in-depth study in the future.

We then explore the feasibility of batching (i.e., grouping multiple
inference requests and executing them at one go) as a plausible
way of addressing the mobile GPU under-utilization problem. We
find that the batched execution of an operator (e.g., over multiple
consecutive video frames) can improve the GPU throughput by
up to 35% with batch sizes of 5. However, this temporal batching
method is not adequate for real-time mobile applications where
the input needs to be processed right away without waiting for
additional inputs to arrive for batched processing. Also, this can
be only applicable to the same operators with the same weights,
reducing the opportunities of batching significantly. This is different
from server-side batching [6, 14] where many concurrent requests
arrive within a short time window.

https://doi.org/10.1145/3469116.3470014
https://doi.org/10.1145/3469116.3470014
https://doi.org/10.1145/3469116.3470014

EMDL ’21, June 25, 2021, Virtual, WI, USA

Jingyu Lee, Yunxin Liu, and Youngki Lee

Model DeepLab-V3 [1] Inception-V3 [16] ResNet-V2 [7] SqueezeNet-V1 [9] MobileNet-V1 [8] MobileNet-V2 [15]
FLOPs 734M 5.73G 3.87G 833M 575M 300M
Params 39M 23M 25.56M 1.25M 4.2M 3.4M
Input size 257x257x3 299x299x3 224x224x3 224x224x3 224x224x3 224x224x3
Inference time 19.1 ms 61.5 ms 35.5 ms 13.4 ms 8.5 ms 7.4 ms
Table 1: List of evaluated DNN models.
100% 100% 160% q
80% ‘ 20% - I
s R
w 60% W 60% | _guo% ~ e
S a0 Il Sao% | 3 ,~<’—5//’— -
20% S v2 Vi MobileNet-v2 20% f ——ResNet-V2 SqueezeNet-V1 MobileNet-V2 IS 120% / s
MobileNet-V1 Inception-V3 Deeplab-V3 ‘ biil 1 i plab- / " V2 z V1 il 2
0% 0% 100% 4 MobileNet-V1 Inception-V3 Deeplab-V3
) 5 10 20 25 30 0% 10% 20% 30% 40% 50% 60%

15
MFLOPs

(a) Distribution of FLOPs in operators.

Figure 2: Distribution and computational complexities of operators in DNNs.

In this paper, we propose the Parallel Fusion technique that en-
ables parallel execution of independent operators to further utilize
the mobile GPU, which exploits operator parallelism among inde-
pendent operators from the multi-DNN workload of emerging AR
DNN s with multiple branches. The key ideas of Parallel Fusion are 1)
Construction of unified kernel code and 2) Branch divergence-aware
thread workload assignment in run-time, to accumulate workloads
from multiple kernels for better latency hiding.

The summary of our contributions is as follows:

e We show that the mobile GPU is seriously under-utilized
(e.g., 18 % ALU utilization and 7 % LSU utilization) for 6 types
of DNN models.

o We explore the feasibility of batching to address the GPU
under-utilization problem. Also, we suggest a new Parallel
Fusion technique to enhance the GPU utilization for real-
time, multi-DNN application scenarios.

e We implement the Parallel Fusion method based on the OpenCL
backend of the MNN [11] mobile deep learning framework.
Our evaluation shows that our parallel fusion technique be-
tween 2 operators and 3 operators achieves 36% ~ 195% and
31% ~ 218% throughput, respectively.

2 MOBILE GPU UNDER-UTILIZATION

Experiment setting. To understand the GPU utilization for vari-
ous models with different computational complexity, we consider 6
state-of-the-art DNNGs listed in Table 1. We execute these models on
the MNN framework [11] with the OpenCL-based GPU backend.
We conduct experiments with Samsung Galaxy S20 (USA version)
equipped with an Adreno 650 GPU and octa-core Kryo 585 ARM
CPU. We use Qualcomm Snapdragon Profiler to measure GPU uti-
lization (e.g., ALU and LSU utilization).

Results. Figure 1 illustrates the average utilization of ALU and
LSU is around 18% and 7% across the 6 DNN models, respectively.
The overall tendency of hardware utilization is weakly associated
with the overall complexity of the model. However, exceptional
cases such as Inception-V3 worse utilizes LSU compared to the
MobileNet-V2, which has 19x smaller FLOPs. We observe that the

Normalized FLOPs

1 2 3 4 7 8 9 10

5 6
Batch Sizes

(b) Distribution of Normalized FLOPs in operators.

Figure 3: Throughput of batching rela-
tive to executing them individually.

component analysis of the model better explains the hardware uti-
lization of the GPU. For example, Figure 2 shows the distribution
and computational complexities of operators in DNN. Inception-
V3 is composed of operators that have smaller FLOPs than the
MobileNet-V2 regardless of its overall heavy complexity. GPU-based
framework interprets the DNN inference task as a sequence of ker-
nel execution representing the individual operator’s computation.
Consequently, utilization of the hardware is closely related to the
computational characteristics of individual operators in DNN.

3 IMPROVING MOBILE GPU UTILIZATION
3.1 Approaches

Hardware-based solution. Advances of modern GPU architec-
tures such as NVIDIA Hyper-Q of Kepler and AMD GCN enables
concurrent execution of multiple kernels on different GPU streams
to mitigate the resource under-utilization. However, concurrent
kernel execution is not available in mobile yet since recent market-
dominant mobile GPU architectures such as Qualcomm Adreno,
ARM Mali, and Imagination Technologies PowerVR still rely on a
single stream execution.

Software-based solution. DNN is a computationally intensive
and easily parallelizable workload. Despite its overall heavy com-
plexity, most of the building blocks of the deep learning model are
light-weight operators requiring small and short GPU computation.
As shown in Figure 2, almost 60% to 80% of operators are under 5
MFLOPS. Furthermore, more than 50% of operators have 1% or less
proportion of model’s operation across the 6 models. Therefore,
most DNN frameworks [6, 14] utilize batching to process multiple
identical computations at a time to increase the size of workloads
for better hardware utilization. In addition, both of the two distinct
computation phases of DNN (training and inference) can benefit
from batching.

ParallelFusion: Towards Maximum Utilization of Mobile GPU for DNN Inference

Timeline Naive Execution

Sequential Fusion

EMDL ’21, June 25, 2021, Virtual, WI, USA

Parallel Fusion

[enqueue Kernel 1 |

engqueue Kernel 1 & 2]

enqueue Kernel 1 & 2

Kernel 2

enqueue Kernel 2] [

) '

l[Kernel 2]

Kernel 2]

global_size_0 f

global_size_1

offset_0 offset_1

[| S | 0} e e o S o o o) o S | S | | | A | o [

GPU Threads

GPU Threads

GPU Threads

Figure 4: An illustration of kernel execution on GPU. Sequential fusion assumes element-wise case that requires no block-wise
synchronization. Green area illustrates threads that activated for the computation.

3.2 Opportunities of Batching for Mobile GPU

Recent studies on desktop GPU show that batching is an effective so-
lution to improve throughput. We conduct preliminary evaluations
to explore the effectiveness of batching in mobile GPU.

We first evaluate the model-wise effectiveness on the 6 DNNs
listed in Table 1 across different batch sizes. Figure 3 shows that the
throughput of mobile GPU can be further increased by processing
multiple inputs at a time. In batch sizes of 5, MobileNet families [1,
8,15] ! can achieve more than 30% of improvement and it saturates
as batch size increases. Similar to the GPU component utilization,
the effectiveness of the batching is also related to the computational
characteristics of individual operators. As shown in Figure 2, ~ 80%
of operators in the models that achieve high throughput gains are
below 5 MFLOPs. Furthermore, SqueezeNet-V1 shows the worst
throughput gain from batching because of its heavy operators.

One of the key benefits of batching is latency hiding. GPU is
known to have heavy memory latency bound due to the mem-
ory access cost. For example, global memory access of the GPU
takes around 400 cycles which is 16-66x (or reported to be even
worse) of the arithmetic operation latency [13]. GPU simultane-
ously executes multiple threads, and this enables context switching
between active threads to hide latency [17]. Batching increases the
number of workloads per GPU invocation, which leads to better
occupancy and latency hiding. This enables desktop-scale GPU?
to improve the system throughput up to 13.3x for batch sizes of
32 compared to the individual execution of DNN. However, mobile
GPU has smaller capacity to hold active threads at once compared to
desktop-scale GPU. Nvidia RTX 2070 Super has a 20X number of exe-
cution units(streaming multiprocessors) compare to the Qualcomm
Adreno 650 GPU and each execution unit can hold 2x more active
set of threads(wave) simultaneously. This explains the earlier satu-
ration with smaller batch sizes and why batching cannot achieve
dramatic improvement in mobile GPU. Nevertheless, this simple
technique still could achieve up to 50% throughput improvement
and requires in-depth study for further utilization of the mobile
GPU.

3.3 Challenges of Batching for Mobile GPU

The key challenge of the batching lies in the preparation of the
inputs. In the training phase of the DNN, a framework samples a
set of data(minibatch) from the existing database per each iteration.

!Note the backbone network of Deeplab-V3 is MobileNet-V2.
Inception-V3 on Nvidia GTX 1080

In addition, minibatch-based stochastic gradient descent algorith-
mically utilizes batching for faster convergence, which naturally
leads to higher throughput.

Unlike the training phase, inference of DNN processes input of
the application request as they arrive. Which requires low latency
along with high throughput as multiple clients expect a real-time
response. To solve this problem, server-level deep-learning serv-
ing frameworks consider inputs that are identical in graph-level
[6, 14] and aggregate requests over time to increase the system-level
throughput. Despite recent progresses that utilize the finer-grained
level of user-defined operators [21] or recurrent blocks [4] to in-
crease the opportunity to batch, the unit of batching is limited to
the same models or specific operators. However, cloud-based deep
learning frameworks are designed to serve requests from multiple
applications simultaneously. This alleviates the current limitation
of batching in the server-level DNN framework. For instance, if
multiple clients send processing requests of facial recognition DNN
that deployed on a social network service app, these frameworks
can guarantee a sufficient amount of requests for the same model
for batching.

However, mobile deep-learning framework targets a single fore-
ground application, and existing techniques in server-level frame-
works cannot mitigate the limitation of the batching in mobile
scenarios due to the limited number of requests. Furthermore, it is
also not adequate to use a wider time window for further aggrega-
tion due to the strict real-time constraint of mobile applications.

4 PARALLEL FUSION

We propose Parallel Fusion technique to enable concurrent execu-
tion of different operators to better utilize mobile GPU in DNN
workloads. Figure 4 shows the key differences between existing
execution models and Parallel Fusion. First, Parallel Fusion accumu-
lates workloads of sub-kernels to span more threads in one kernel
execution for better latency hiding. Second, assign each thread to
the corresponding sub-kernel in the execution phase of the kernel.

4.1 Use Cases

Given DNNs that represented as directed acyclic graph (DAG)?,
Parallel Fusion utilizes independent kernels from single or multiple
DAGs for concurrent execution. There are two plausible ways to

3Vertices are kernels that represent a set of layers (single or sequentially fused set of
layers, e.g., Convolution-Batch normalization-ReLU), and edges specify connections
between layers input and output.

® NG e W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

FET N R

© ®

EMDL ’21, June 25, 2021, Virtual, WI, USA

__kernel void depthwise_conv2d_conv_2d_1x1(
__private const uint2 offset_o,
GLOBAL_SIZE_2_DIMS (@)

// Arguments of depthwise_conv2d
__private const uint2 offset_1,
GLOBAL_SIZE_2_DIMS(1)

. // Arguments of conv_2d_1x1

)

if GLOBAL_ID_CONDITION_2_DIMS (@) {
const int output_channel_width_idx = get_global_id(@) - offset@.x;
const int output_batch_height_idx = get_global_id(1) - offset0.y;
SKIP_ID_2_DIMS(@, output_channel_width_idx, output_batch_height_idx);

. // Remaining body of depthwise_conv2d

}

else if GLOBAL_ID_CONDITION_2_DIMS(1) {
const int output_channel_width_idx = get_global_id (@) - offsetl.x;
const int output_batch_height_idx = get_global_id(1) - offsetl.y;
SKIP_ID_2_DIMS(1, output_channel_width_idx, output_batch_height_idx);

. // Remaining body of conv_2d_1x1

3

Figure 5: The OpenCL code for a fused kernel.

#define SKIP_ID_2_DIMS(i, input_@, input_1) \
if (input_@ >= global_size_dim@##i || input_1 >= global_size_diml##i) { \
return; \

}

#define GLOBAL_ID_CONDITION_2_DIMS(i) \
(offset##i.x + global_size_dime_##i > get_global_id(0) && offset##i.y +
global_size_diml1_##i > get_global_id(1))

#define GLOBAL_SIZE_2_DIMS(i) __private const int global_size_dime_##i, «
__private const int global_size_dimi1_##i,

Figure 6: Pre-processor definitions for branch generation.

infer operator-level parallelism from DNN workloads in mobile
devices.

o DNNs with branches. Unlike traditional DNNs, several re-
cently proposed architectures[9, 16, 22] are based on having
internal branches. In addition, recent neural architecture
search approaches consider multi-branches in their search
spaces [12]. Existing DNN framework sequentially executes
the DNN operators in topological order. However, indepen-
dent layers from internal branches enable different operators
of the model to be executed in parallel.

e Operators from different models. Future augmented reality,
and virtual reality applications involve real-time multiple
DNN tasks such as scene understanding (e.g., object recog-
nition, depth estimation), photo-realistic virtual object gen-
eration (e.g., style transfer), and user interaction (e.g., hand
tracking) [19, 20].

4.2 Parallel Fusion Technique

Parallel Fusion fuses multiple kernels to create the unified kernel
code for parallel execution. This process requires the following
considerations in two steps. Note that we use the terminology of
the Qualcomm Snapdragon Mobile Platform OpenCL to describe the
algorithmic details, but most of the concepts are easily applicable
to other GPU platforms such as CUDA.

Fused Operator Preparation. Given a set of DNNs from the
above use cases, it is essential to prepare kernels in advance to en-
able parallel execution of every possible combination of individual
kernels in run-time.

Jingyu Lee, Yunxin Liu, and Youngki Lee

OpenCL ‘
get_global_size
get_global_id
get_num_groups
get_group_id

ParallelFusion
global_size_dim_i
get_global_id - offset_i
global_size_dim_i / get_local_size
get_group_id - offset_i / get_local_size

Table 2: Conversion table for representative OpenCL work-
item built-in functions for kernel k;.
GPU Execution Flow

& A
e]

Code Flow

S Ve

GPU Threads (Wave)

1
v
statement
(B 7

Figure 7: Branch divergence of wave. If threads from same
wave diverges, GPU executes every execution paths with
masked operation.

Figure 5 illustrates the fused OpenCL kernel code. Given any
arbitrary set of independent kernels K, we first parse each ker-
nel k; (sub-kernel) to extract function arguments arg; and bodies
b;. Also, add an additional suffix (_i) to duplicate identifiers to
prevent any collision. Kernel code formulates the address of the
memory based on its index (global_id) out of the entire workload
(global_work_size). As we accumulate workloads from multiple ker-
nels, we add offset_i and global_size definition (L9 from Figure 6) to
arg;, then update OpenCL work-item built-in functions in b; based
on Table 2 to preserve memory addresses in execution time.

Ultimately, re-organize the unified kernel code based on the
following steps. First, list each argument in arg; for a new kernel.
Second, place each b; along with statements (definitions in L1, L6
from Figure 6) to let the thread select or skip its own execution
logic in run-time.

Fused Operator Execution. As shown in Figure7, executing
branches in on wave degrades the performance. As we utilize
branches to assign threads to its statements in run-time, it is crucial
to avoid branch divergence of threads locked as a wave in workload
boundaries between sub-kernels. We round each workload and
offset of kernel up to the hardware-specific wave size to prevent
performance degradation from branch divergence. Finally, Bind
(clSetKernelArg) all function arguments including workload and
offset in order before kernel execution.

n-1

lobal k_size;
global_work_size = ws fw

ws 1

global_work_size;

-1
ti= ws
of fset_i ; [WS

5 EVALUATION

Experiment setting. We implement Parallel Fusion on top of the
OpenCL backend of the MNN [11]. Except for the 3k framework-
level code change, We only added a few code changes per kernel

ParallelFusion: Towards Maximum Utilization of Mobile GPU for DNN Inference

- 200%
2 150%
K=
& 100%
]
i
£
£ o I
4 €. 6 €. C. G G G & K O € G O O C G O O O 9
X5 % % 4 %y, Sop g o,,/o ?"0@"’0 %
v S e

(a) with 2 Operators

EMDL ’21, June 25, 2021, Virtual, WI, USA

250%
200%
150%
100%
0% DDDUHHH
0%
2 € 6 CCGGGRCCGGGECGGRYCGC C G G
A A A T T T A A T A T T R AT AT
PR AL R NG N, O R R R o G 2 Ny e,
%, % 0 R A AT 30, 60, 0 %, G,
X g AT T R R
%, % % NG, S EACRA
k0 % o % » %o Y
‘% %
2

(b) with 3 Operators. Uniformly sampled 25 combinations from list sorted by
throughput.

Figure 8: Performance of fusion between different operators compared to sequential execution of individual operators. The
reported values are averaged value of all possible combination of operators from DNNs listed in Table 1.

s Deeplab-V3
Inception-V3
ResNet-V2

e SqueezeNet-V1

mjmm MobileNet-V1

MobileNet-v2

Deeplab-V3 (Branch Divergence)
Inception-V3 (Branch Divergence)
ResNet-V2 (Branch Divergence)
SqueezeNet-V1 (Branch Divergence)
MobileNet-V1 (Branch Divergence)
MobileNet-V2 (Branch Divergence)

-

- -

180%

5 140% ~

2 - 3

®100% 1=z e D

o "---*--—‘h‘~ = ';~~ :~f---—'§'

£ 0% *“‘*‘"-*—-:“—:&T

(= (] —_—————
20% !

3 4 5 6 7
Number of Fused Operators

Figure 9: Performance of fusion between identical operators
from same model.

103 { . 200.0%
R 175.0%
102 4 e -‘;:_;n;.,v.?:i-. s =
BUERICE B ETEET ° Bwese
" r5~#~¥‘-:§ e v win (" | 150.0%
10! 4 . . E M e
. i1 L 125.0%
H \
£ H x
= W + 100.0%
=
1074 L 75.0%
C_1x1+DWC 50.0%
1072,
25.0%
S+C_1x1
10734 & N
) ‘ i " " ; ‘ 0.0%
1073 102 101 10° 10! 102 103
MFLOPs

Figure 10: Performance of fusion between different opera-
tors. Color of the marker corresponds to the throughput
compared to individual executions.

to fully reuse the existing OpenCL kernel of the MNN. We evalu-
ate Parallel Fusion for the 6 DNNs in Table 1 based on evaluation
settings in §3. Reported numbers are averaged results of 100 con-
secutive inferences with 5 warm-up iterations.

Fusion of identical operators. To analyze the performance
of Parallel Fusion and branch divergence on identical operators
without considering the combination or computational complexity

of individual operators, we evaluate the fusion of various numbers
of identical operators across the same model.

Figure 9 shows the throughput of fused execution of identical
operators. Parallel Fusion increases the throughput up to 40% higher
throughput in evaluations on MobileNet-V2 and DeepLab-V3. The
effectiveness of the technique varies across different types of model
and shows a similar tendency to the result of batching in Figure 3.

The dotted series show the throughput of Parallel Fusion without
consideration of the branch divergence. Overall, branch divergence
incurs performance degradation which reaches up to 50% in case
of fusion with more than 5 numbers of kernels.

Fusion of heterogeneous operators. We study the effective-
ness of Parallel Fusion on every combination of 2 or 3 operators*
from 6 DNNs compared to the single kernel execution.

Figure 8a shows the performance on fused execution of 2 op-
erators. Parallel Fusion achieves 36% ~ 195% throughput depends
on a combination. Our method shows better utilizes than single
operator execution from 66% out of all combinations. Similarly,
Figure 8b illustrates the performance of three operators. Parallel
Fusion performs 31% ~ 218% throughput with 3 operators. Similar
to the result with 2 operators, fused execution is beneficial in ~ 80%
out of all combinations. We notice that the fusion of more than 2
squeeze operators incurs huge performance degradation.

Overall, the effectiveness of the Parallel Fusion technique highly
dependent on the combination of operators. Figure 10 illustrates the
in-depth analysis of 2 operator fusion associated with the FLOPs of
each operator. As shown as dotted groups, the throughput of the
Parallel Fusion shows a similar tendency depends on a combination
of components.The effectiveness depends on the computational
characteristics (type of the operator) than the algorithmic complex-
ity of the individual component since each group stretched over
10-100x% scales of MFLOPs.

GPU Utilization analysis. Finally, we report GPU utilization
of Parallel Fusion on parallel execution of 2 MobileNet-V2.

Figure 11 shows GPU utilization of all operators across the entire
inference timeline. Parallel execution of two DNN increases by 30%
compared to the separate executions (12.1 ms vs. 15.6 ms). The
major factors of this throughput gain are operators in the dotted
box. Specifically, parallel execution of the first 1x1 convolution of
depth-wise separable convolution increased the ALU utilization by
45% (11% to 16%), and depth-wise convolution increased the LSU
utilization by 61% (6.5% to 10.5%).

4 Abbreviations for operator types (C: convolution, C_1x1: 1x1 convolution, S: squeeze,
P: pooling, DWC: depth-wise convolution, DWC_s1: DWC with stride of 1).

EMDL ’21, June 25, 2021, Virtual, WI, USA

40%

Jingyu Lee, Yunxin Liu, and Youngki Lee

LSU Utilization (Single Operator) ALU Utili

(Single O

Ol
w
Q
X

20%
10%
0%

Utilization

6 RELATED WORK

Fusion of different kernels is a well-known technique for DNN
inference from existing frameworks(2, 5, 11, 18]. It can reduce the
kernel launch overhead as well as avoid redundant memory access
requests. For example, element-wise operations such as batch nor-
malization or activation layers can be easily computed with simple
arithmetic operations on the output of preceding convolution layers
without extra GPU invocation and memory access. However, it is
only applicable to simple arithmetic or element-wise operator since
GPU does not support global synchronization.

7 CONCLUSION AND FUTURE WORK

We presented Parallel Fusion, a kernel fusion technique that enables
parallel execution of heterogeneous operators of DNN. To further
utilize the GPU, Parallel Fusion invokes multiple workloads from
different kernels at one request to enable better latency hiding.
Our experiment showed that Parallel Fusion achieves up to 195%
to 218% throughput with parallel execution between 2 and 3 op-
erators, respectively. We envision that our Parallel Fusion could
utilize operator-level parallelism from recent DNNs with branches
and future AR/VR scenarios requiring simultaneous execution of
multiple DNNs to further utilize the mobile GPU.

Extension of the Parallel Fusion towards model-level execution
scenarios stated in §4.1 requires modeling effectiveness of the tech-
nique. Specifically, we need a policy that maximizes the end-to-end
throughput to group independent operators to avoid exhaustive
search. The essential factors for performance modeling are as fol-
lows. First, in-depth study on the relationship between computa-
tional characteristics of kernel and effectiveness of the technique.
Second, theoretical occupancy® of the mobile GPU to estimate the
potential latency hiding from the accumulated workload.

8 ACKNOWLEDGEMENTS

This work was supported by Research Resettlement Fund for the
new faculty of Seoul National University, and MSIT(Ministry of
Science, ICT), Korea, under the High-Potential Individuals Global
Training Program)(2020-0-01649) supervised by the IITP(Institute
for Information & Communications Technology Planning & Evalu-
ation).

REFERENCES

[1] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam.
2017. Rethinking Atrous Convolution for Semantic Image Segmentation. CoRR
abs/1706.05587 (2017). arXiv:1706.05587 http://arxiv.org/abs/1706.05587

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning. In 13th USENIX Symposium on Operating Systems

[2

SWhich can be inferred from hardware specifications such as the maximum number
of active waves and the size of the wave.

—
L

[10

[11

[12

(13]

(14]

(15

[16

(17]

[unp
2%

[20

[21

[22

Design and Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 578—
594. https://www.usenix.org/conference/osdi18/presentation/chen

M. S. Elbamby, C. Perfecto, M. Bennis, and K. Doppler. 2018. Toward Low-
Latency and Ultra-Reliable Virtual Reality. IEEE Network 32, 2 (2018), 78-84.
https://doi.org/10.1109/MNET.2018.1700268

Pin Gao, Lingfan Yu, Yongwei Wu, and Jinyang Li. 2018. Low latency rnn inference
with cellular batching. In Proceedings of the Thirteenth EuroSys Conference. 1-15.
Google. Accessed on 20.12.2020. Tensorflow Lite. https://www.tensorflow.org/
lite/

Google. Accessed on 20.12.2020. Tensorflow Serving.
tensorflow/serving

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

Forrest N. Jandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J.
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <1MB model size. CoRR abs/1602.07360 (2016). arXiv:1602.07360
http://arxiv.org/abs/1602.07360

Shiqi Jiang, Lihao Ran, Ting Cao, Yusen Xu, and Yunxin Liu. 2020. Profiling
and Optimizing Deep Learning Inference on Mobile GPUs. In Proceedings of the
11th ACM SIGOPS Asia-Pacific Workshop on Systems (Tsukuba, Japan) (APSys
"20). Association for Computing Machinery, New York, NY, USA, 75-81. https:
//doi.org/10.1145/3409963.3410493

Xiaotang Jiang, Huan Wang, Yiliu Chen, Zigi Wu, Lichuan Wang, Bin Zou,
Yafeng Yang, Zongyang Cui, Yu Cai, Tianhang Yu, Chengfei Lyu, and Zhihua
Wu. 2020. MNN: A Universal and Efficient Inference Engine. In Proceedings of
Machine Learning and Systems 2020, MLSys 2020, Austin, TX, USA, March 2-4, 2020,
Inderjit S. Dhillon, Dimitris S. Papailiopoulos, and Vivienne Sze (Eds.). mlsys.org.
https://proceedings.mlsys.org/book/287.pdf

Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055 (2018).

X. Mei and X. Chu. 2017. Dissecting GPU Memory Hierarchy Through Mi-
crobenchmarking. IEEE Transactions on Parallel and Distributed Systems 28, 1
(2017), 72-86. https://doi.org/10.1109/TPDS.2016.2549523

NVIDIA. Accessed on 20.12.2020. Tensor RT. https://developer.nvidia.com/
tensorrt

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
4510-4520.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. 2016. Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
2818-2826.

Vasily Volkov. 2016. Understanding latency hiding on GPUs. Ph.D. Dissertation.
UC Berkeley.

XiaoMi. Accessed on 20.12.2020. MACE. https://github.com/XiaoMi/mace
Juheon Yi, Sunghyun Choi, and Youngki Lee. 2020. EagleEye: wearable camera-
based person identification in crowded urban spaces. In Proceedings of the 26th
Annual International Conference on Mobile Computing and Networking. 1-14.
Juheon Yi and Youngki Lee. 2020. Heimdall: Mobile GPU Coordination Plat-
form for Augmented Reality Applications. In Proceedings of the 26th Annual
International Conference on Mobile Computing and Networking (London, United
Kingdom) (MobiCom °20). Association for Computing Machinery, New York, NY,
USA, Article 35, 14 pages. https://doi.org/10.1145/3372224.3419192

Sheng Zha, Ziheng Jiang, Haibin Lin, and Zhi Zhang. 2019. Just-in-Time Dynamic-
Batching. CoRR abs/1904.07421 (2019). arXiv:1904.07421 http://arxiv.org/abs/
1904.07421

Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin,
Yue Sun, Tong He, Jonas Mueller, R Manmatha, et al. 2020. Resnest: Split-attention
networks. arXiv preprint arXiv:2004.08955 (2020).

https://github.com/

https://arxiv.org/abs/1706.05587
http://arxiv.org/abs/1706.05587
https://www.usenix.org/conference/osdi18/presentation/chen
https://doi.org/10.1109/MNET.2018.1700268
https://www.tensorflow.org/lite/
https://www.tensorflow.org/lite/
https://github.com/tensorflow/serving
https://github.com/tensorflow/serving
https://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
https://doi.org/10.1145/3409963.3410493
https://doi.org/10.1145/3409963.3410493
https://proceedings.mlsys.org/book/287.pdf
https://doi.org/10.1109/TPDS.2016.2549523
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://github.com/XiaoMi/mace
https://doi.org/10.1145/3372224.3419192
https://arxiv.org/abs/1904.07421
http://arxiv.org/abs/1904.07421
http://arxiv.org/abs/1904.07421

	Abstract
	1 Introduction
	2 Mobile GPU Under-utilization
	3 Improving Mobile GPU Utilization
	3.1 Approaches
	3.2 Opportunities of Batching for Mobile GPU
	3.3 Challenges of Batching for Mobile GPU

	4 Parallel Fusion
	4.1 Use Cases
	4.2 Parallel Fusion Technique

	5 Evaluation
	6 Related Work
	7 Conclusion and Future Work
	8 Acknowledgements
	References

