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Abstract

The canonical approach to video-and-language learning
(e.g., video question answering) dictates a neural model to
learn from offline-extracted dense video features from vi-
sion models and text features from language models. These
feature extractors are trained independently and usually
on tasks different from the target domains, rendering these
fixed features sub-optimal for downstream tasks. Moreover,
due to the high computational overload of dense video fea-
tures, it is often difficult (or infeasible) to plug feature ex-
tractors directly into existing approaches for easy finetun-
ing. To provide a remedy to this dilemma, we propose a
generic framework CLIPBERT that enables affordable end-
to-end learning for video-and-language tasks, by employ-
ing sparse sampling, where only a single or a few sparsely
sampled short clips from a video are used at each train-
ing step. Experiments on text-to-video retrieval and video
question answering on six datasets demonstrate that CLIP-
BERT outperforms (or is on par with) existing methods that
exploit full-length videos, suggesting that end-to-end learn-
ing with just a few sparsely sampled clips is often more
accurate than using densely extracted offline features from
full-length videos, proving the proverbial less-is-more prin-
ciple. Videos in the datasets are from considerably differ-
ent domains and lengths, ranging from 3-second generic-
domain GIF videos to 180-second YouTube human activity
videos, showing the generalization ability of our approach.
Comprehensive ablation studies and thorough analyses are
provided to dissect what factors lead to this success. Our
code is publicly available.1

1. Introduction
Humans communicate with each other in this interactive

and dynamic visual world via languages, signs, and ges-
tures. The ability to jointly understand both visual and

* Equal contribution.
1https://github.com/jayleicn/ClipBERT
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Figure 1: Comparison between popular video-and-language
learning paradigm (top) and CLIPBERT (bottom). In contrast to
most existing methods that utilize offline (stop gradient) extracted
dense video features and text features, CLIPBERT uses sparsely
sampled clips and raw text tokens for end-to-end modeling.

textual clues is an essential ability for intelligent agents
to interpret multimodal signals in the physical world. A
wide range of tasks based on real-life videos have been
designed to test such ability, including text-to-video re-
trieval [75, 28, 54], video captioning [54, 75, 82], video
question answering [74, 23, 33, 34], and video moment re-
trieval [2, 18, 35]. The de facto paradigm to tackle these
cross-modal tasks is to first extract dense video features
from pre-trained vision models [21, 4] and text features
from pre-trained language models [50, 11], then apply mul-
timodal fusion to wrangle together these fixed representa-
tions in a shared embedding space (Figure 1 (top)).

Existing approaches [23, 33, 83, 31] following this
paradigm have achieved strong success, yet suffer from two
main drawbacks: (i) Disconnection in tasks/domains: of-
fline feature extractors are often trained on tasks and do-
mains different from the target task. For example, fea-
tures learned for action recognition from human activity
videos [26] are incongruently applied to downstream video
question answering on generic-domain GIF videos [23].
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(ii) Disconnection in multimodal features: learned features
from different modalities are independent of each other. For
instance, action recognition models [62, 66, 4] are typi-
cally trained from pure video data without textual input, yet
are applied to video-and-language tasks. End-to-end task-
specific finetuning offers a way to mitigate these inherent
disconnections. However, extracting features from the full
sequence of video frames, as in most existing work, casts
excessive demand on memory and computation, rendering
it difficult or even infeasible to directly plug feature extrac-
tors into a video+language learning framework for efficient
end-to-end finetuning.

Motivated by this, we propose CLIPBERT, a generic
and efficient framework for end-to-end video-and-language
learning (Figure 1 (bottom)). Two aspects distinguish CLIP-
BERT from previous work. First, in contrast to densely
extracting video features (adopted by most existing meth-
ods), CLIPBERT sparsely samples only one single or a
few short clips from the full-length videos at each train-
ing step. The hypothesis is that visual features from sparse
clips already capture key visual and semantic information
in the video, as consecutive clips usually contain similar
semantics from a continuous scene. Thus, a handful of
clips are sufficient for training, instead of using the full
video. Then, predictions from multiple densely-sampled
clips are aggregated to obtain the final video-level pre-
diction during inference, which is less computational de-
manding. This sparse-training-then-dense-inference strat-
egy greatly reduces memory needs and computations, al-
lowing economical end-to-end learning from raw video
frame pixels and language tokens.

The second differentiating aspect concerns the initializa-
tion of model weights (i.e., transfer through pre-training).
In recent literature, image-text pre-training (e.g., using
COCO Captions [5] or Visual Genome Captions [29]) has
been applied to image-text tasks [61, 44, 6, 58, 22, 36, 81],
and video-text pre-training (e.g., using HowTo100M [46])
to video-related tasks [59, 83, 15, 37]. There has been no
study to cross-examine the effect of image-text pre-training
on video-text tasks. Intuitively, visual features learned
through pre-training from large-scale image datasets should
also help video understanding tasks that rely on visual clues
in static video frames. To investigate this, we use 2D ar-
chitectures (e.g., ResNet-50 [21]) instead of 3D features
[62, 4, 51, 73] as our visual backbone for video encod-
ing, allowing us to harness the power of image-text pre-
training for video-text understanding along with the advan-
tages of low memory cost and runtime efficiency. Empiri-
cally, we observe that the knowledge learned in image-text
pre-training indeed helps video-text tasks; this simple strat-
egy helps us achieve better or comparable performance to
previous state of the art on text-to-video retrieval and video
question answering tasks.

Our contributions are three-fold: (i) We propose
CLIPBERT, a new end-to-end learning framework for
video+language tasks. Experiments show that CLIP-
BERT achieves superior (or on par) performance than ex-
isting methods across diverse video-text tasks, where the
average video length ranges from a few seconds to three
minutes. (ii) Our work suggests “less is more”: the pro-
posed end-to-end training strategy with a single or a few
(less) sparsely sampled clips is often more accurate than
traditional approaches that employ densely extracted video
features. (iii) We demonstrate that image-text pre-training
benefits video-text tasks. We also provide comprehensive
ablation studies to reveal the key factors that lead to the suc-
cess of CLIPBERT, in hope of inspiring more future work.

2. Related Work

Video and Language Understanding. Popular video-and-
language tasks include text-to-video retrieval [75, 28, 54],
video captioning [75, 82, 28, 54, 40], video question an-
swering [74, 23, 33], and moment retrieval [2, 18, 35].
Standard approaches [23, 74, 17, 80, 33, 12, 31, 32] lever-
age offline extracted video and text features from action
recognition models [26, 66, 4, 73], image recognition
models [10, 21], and language models [47, 50, 11, 42].
Aligned with the success of transformer-based [64] lan-
guage pre-training [11, 42, 76, 52, 30, 8] and image-text
pre-training [61, 44, 6, 36, 22, 81, 16, 7], video-text pre-
training [59, 83, 15, 37, 45, 46] has shown promising results
on video-and-language tasks. Beyond using fixed features
and same-domain data (i.e., video-text pre-training only for
video-text tasks), our work focuses on end-to-end training
and applying image-text pre-training for video-text tasks.

Action Recognition. Modern video action recognition ar-
chitectures are typically designed with deep 2D [56, 60, 21]
or 3D [62, 4, 73] convolutional networks. These back-
bones are often computation and memory heavy, making
it extremely difficult to directly process videos of consid-
erable length. To ease this difficulty, instead of training on
full-length videos, models are often trained with randomly
sampled short clips from the videos [55, 62, 51, 73, 67, 14,
13, 66]. At inference time, predictions from multiple uni-
formly sampled clips are aggregated together as the final
video-level prediction. In relation to these works, we adopt
a similar strategy to perform sparse training and dense in-
ference to reduce overhead on video processing, but focus
on video-and-language tasks with cross-modal modeling of
video and language, in contrast to pure video modeling.

3. CLIPBERT with Sparse Sampling

We propose CLIPBERT, a general framework that en-
ables end-to-end learning on video and language data, by
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learning joint representations directly from video frame pix-
els and raw text tokens, instead of from offline-extracted
single-modality features. Figure 1 (bottom) gives an
overview of CLIPBERT framework. It adopts a sparse sam-
pling strategy using only a single or a few sampled clips
at each training step, instead of full-length videos. Each
sampled clip is independently encoded with a vision back-
bone model, the visual features from which are then fed to a
cross-modal module that extracts relations between the clip
and its associated text representations. Independent predic-
tions from all the sampled clips are fused together (e.g.,
through mean-pooling) to derive a consensus at the video
level. A task-specific loss is calculated based on this con-
sensus to learn model parameters. During inference, CLIP-
BERT densely samples a sequence of clips from the video
and aggregates their predictions as the final prediction.

Most existing work [23, 33, 83, 31] models offline-
extracted dense video features and text features. Formally,
we denote a video-text pair as V (for video) and S (for
text sequence). The video V is further denoted as a list
of N clips of equal duration [c1, c2, ..., cN ]. This standard
paradigm can be formulated as:

p=H([FSGv (c1),FSGv (c2), ...,FSGv (cN )],FSGl (S)), (1)

where FSGv and FSGl are vision and language encoder,
respectively. The superscript SG denotes Stop Gradient,
meaning that gradients cannot be back-propagated through
the two encoders. H is a cross-modal encoder and pre-
dictor, which models the relations between the encoded
video/language inputs and makes predictions. p is the
video-level prediction. A task-specific loss function Ltask
is then applied to calculate the loss value ltask based on this
prediction and its corresponding ground-truth q:

ltask = Ltask(p, q). (2)

Sparse Sampling for Training. Instead of using the full-
length video with N clips, CLIPBERT sparsely (and ran-
domly) samples Ntrain clips {cτi}

Ntrain
i=1 from V for train-

ing. Ntrain is typically much smaller than N . We model
a sampled clip cτi together with text input S to produce a
prediction pτi :

pτi = H(Fv(cτi),Fl(S)), (3)

where Fv and Fl are vision/language encoders. Different
from Equation 1 that uses offline vision/language encoders,
CLIPBERT is end-to-end trainable, allowing task-specific
loss to further finetune the encoders, learning better repre-
sentations. Independent predictions from all sampled clips
are aggregated to derive a consensus. The loss value ltask

is calculated based on this video-level consensus:

ltask = Ltask(G(pτ1 , pτ2 , ..., pτNtrain ), q), (4)
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Figure 2: Overview of CLIPBERT architecture. For simplicity,
we only show an illustration of producing prediction for a single
sampled clip. When multiple clips are used, their predictions are
fused together as the final prediction.

where G is the prediction/score aggregation function (e.g.,
mean-pooling). WhenNtrain is larger than one, this formu-
lation can be regarded as a form of multiple instance learn-
ing (MIL) [70]. At inference, we uniformly sample Ntest
clips of the same duration as training clips, then aggregate
predictions from all Ntest clips to form our final prediction.

CLIPBERT’s sparse training strategy can be interpreted
as a type of data augmentation: different subsets of clips
from the same video are used at different training steps,
which improves the model’s generalization ability. In this
sense, it is analogous to random cropping [56, 21] com-
monly used in image classification tasks. It also takes in-
spiration from action recognition methods [55, 62, 66, 14],
where a video classifier is trained on sampled clips.

Model Architecture. Figure 2 gives an overview of CLIP-
BERT architecture. For the vision encoder Fv , we use a
2D CNN architecture ResNet-50 [21] instead of 3D archi-
tectures (such as C3D [62] or I3D [4]), because 2D models
typically consume less memory and run faster. Besides, 2D
CNNs have proved to work reasonably well on video under-
standing tasks such as action recognition [66, 51]. Specif-
ically, we take the first 5 Conv blocks of ResNet-50 [21]
and add an extra convolution layer to reduce its output fea-
ture depth, as well as a 2×2 max-pooling layer for spatial
down-sampling, following Pixel-BERT [22]. For each sam-
pled clip, we uniformly sample T frames and obtain T fea-
ture maps. A temporal fusion layerM (e.g., mean-pooling)
is applied to aggregate the frame-level feature maps into
a single clip-level feature map. We then add a row-wise

3



and a column-wise position embedding to each feature vec-
tor based on their 2D position. These embeddings are the
same trainable position embeddings as in BERT [11]. Col-
lectively, these two position embeddings are indicative of
2D spatial locations of the features, which can be viewed
as a 2D position embedding. The resulting feature map is
flattened into an embedding sequence to represent the clip.

We use a trainable word embedding layer as our lan-
guage encoder Fl to encode language tokens and add train-
able position embeddings to encode positional information
of the tokens. Next, we add different type embeddings [11]
to both clip and text embeddings to indicate their source
type. These two sequences are then concatenated as inputs
to a 12-layer transformer [64, 11] for cross-modal fusion.
Special tokens [CLS] and [SEP] are added in this pro-
cess following [11]. Given a downstream task, we add a
task-specific prediction head with the last-layer [CLS] rep-
resentation as input (e.g., using a two-layer MLP with soft-
max to produce scores for text-to-video retrieval).

Weight Initialization and Pre-training. We initialize the
ResNet-50 layers with weights from grid-feat [24, 53]. It
is trained on Visual Genome [29] for object detection and
attribute classification, and produces effective grid features
for image VQA tasks [3, 20]. Input frames are resized to
have a maximum longer side of L while keeping the as-
pect ratios, and the shorter side is zero-padded to be L
as well [48]. We initialize the transformer and word em-
bedding layers from BERT-base model [11], pre-trained on
BookCorpus [84] and English Wikipedia. These weights
are trained separately for their individual single-modality
tasks, thus simply combining them together in a single
framework for downstream task training may result in sub-
optimal performance. Although pre-training the whole
model end-to-end with large-scale video-text datasets such
as HowTo100M [46] are appealing, we are restricted by the
enormous computation cost.2 Luckily, as we use 2D CNN
as our vision encoder, CLIPBERT is able to directly take
image-text pairs as inputs for training. Thus, we leverage
large-scale image-text datasets (COCO Captions [5] and Vi-
sual Genome Captions [29]) to perform cross-modal pre-
training [61, 44, 22]. Specifically, we use masked language
modeling [11] and image-text matching [61, 44] objectives
to optimize the model. By default, we finetune our model
from this pre-trained weights for downstream video-text
tasks. The impact of different weight initialization strate-
gies is examined in Section 4.3.

Implementation Details. We perform image-text pre-
training on COCO Captions [5] and Visual Genome Cap-
tions [29]. These two datasets contain a total of 5.6M train-
ing image-text pairs on 151K images. This is the same data

2[45] reports that pre-training I3D [4] with offline extracted text fea-
tures on HowTo100M requires ∼3 days with 64 Cloud TPUs v3.

used in UNITER’s [6] in-domain pre-training. We use input
image size L=768, and the resulting feature map from the
vision encoder contains 144 pixels. To improve generaliza-
tion and reduce computation cost, during pre-training, we
follow Pixel-BERT [22] to use pixel random sampling that
samples 100 pixels from the encoded feature map as the in-
put to the transformer layers. Note that we only apply pixel
random sampling for pre-training, and always use the full
feature map for downstream tasks to avoid misalignment
in training and inference [22]. We use WordPiece embed-
dings [71] and keep at most 20 tokens from the caption. We
then randomly mask 15% of the tokens for masked language
modeling. For each image-caption pair, with a probability
of 0.5, we replace the ground-truth caption with a randomly
sampled caption from another image to form a negative pair
for image-text matching. We use AadmW [43] to optimize
end-to-end model training, with an initial learning rate of
5e-5, β1=0.9, β2=0.98, and use learning rate warmup over
the first 10% training steps followed by linear decay to 0.
Our model is implemented in PyTorch [49] and transform-
ers [69]. It is trained for 40 epochs with mixed precision,
on 8 NVIDIA V100 GPUs with a batch size of 32 per GPU.
The whole training process takes 4 days to complete.

For downstream finetuning, we use the same training and
optimizer configurations except that the default input image
size is set to 448 (due to the typically lower resolution of
videos compared to images). Since downstream datasets
vary in scale and domain, we use task-specific learning rates
and training epochs based on validation performance.

4. Experiments

In this section, we evaluate CLIPBERT on two popular
video-and-language tasks, text-to-video retrieval and video
question answering, across six different datasets. We also
provide extensive ablation studies to analyze the key factors
that contribute to CLIPBERT’s success.

4.1. Downstream Tasks

Text-to-Video Retrieval. (i) MSRVTT [75] contains
10K YouTube videos with 200K descriptions. We fol-
low [77, 46], using 7k train+val videos for training and re-
port results on the 1K test set [77]. We also create a lo-
cal val set by sampling 1K video-caption pairs from unused
test videos for our ablation study. (ii) DiDeMo [2] con-
tains 10K Flickr videos annotated with 40K sentences. (iii)
ActivityNet Captions [28] contains 20K YouTube videos
annotated with 100K sentences. The training set contains
10K videos, and we use val1 set with 4.9K videos to re-
port results. For MSRVTT, we evaluate standard sentence-
to-video retrieval. For DiDeMo and ActivityNet Captions,
we follow [80, 41] to evaluate paragraph-to-video retrieval,
where all sentence descriptions for a video are concatenated
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Figure 3: Average video length in different datasets.

L
MSRVTT Retrieval MSRVTT-

R1 R5 R10 MdR QA Acc.
224 6.8 24.4 35.8 20.0 35.78
448 10.2 28.6 40.5 17.0 35.73
768 11.0 27.8 40.9 16.0 35.73

1000 10.0 28.4 39.4 18.0 35.19

Table 1: Impact of input image size L.

to form a paragraph for retrieval. We use average recall at K
(R@K) and median rank (MdR) to measure performance.
Video Question Answering. (i) TGIF-QA [23] contains
165K QA pairs on 72K GIF videos. We experiment with 3
TGIF-QA tasks: Repeating Action and State Transition for
multiple-choice QA, and Frame QA for open-ended QA.
We leave the Count task as future work as it requires di-
rectly modeling full-length videos. (ii) MSRVTT-QA [74]
is created based on videos and captions in MSRVTT, con-
taining 10K videos and 243K open-ended questions. (iii)
MSRVTT multiple-choice test [77] is a multiple-choice
task with videos as questions, and captions as answers.
Each video contains 5 captions, with only one positive
match. For all the QA tasks, we use standard train/val/test
splits and report accuracy to measure performance.

Figure 3 shows a comparison of average video length of
evaluated datasets. Videos across datasets demonstrate con-
siderable difference in domains and lengths, ranging from
3-second generic-domain GIF videos in TGIF-QA to 180-
second human activity videos in ActivityNet Captions.

4.2. Analysis of Sparse Sampling

We conduct comprehensive ablation studies concerning
various aspects of CLIPBERT’s design in this section and
Section 4.3. If not otherwise stated, we randomly sample a
single frame (Ntrain=1 and T=1) from full-length videos
for training, and use the middle frame (Ntest=1) for infer-
ence, with input image size L=448. All ablation results are
on MSRVTT retrieval local val and MSRVTT-QA val sets.

Do we need larger input image size? We compare models
with different input image sizes L ∈ {224, 448, 768, 1000},
results shown in Table 1. Compared to the model with
L=224, larger input resolution improves performance on
the retrieval task, while maintaining a similar performance
on the QA task. The best performance is achieved at around
L=448. Further increasing the resolution does not pro-
vide significant performance boost. [24] shows that increas-
ing input image size from 448 to 1333 always improves
image VQA [3] performance with no sign of saturation,
while we observe the performance converges at around 448

M T
MSRVTT Retrieval MSRVTT-

R1 R5 R10 MdR QA Acc.
- 1 10.2 28.6 40.5 17.0 35.73

Mean Pooling

2 11.3 31.7 44.9 14.0 36.02
4 10.8 30.0 43.6 14.0 35.83
8 10.6 32.5 45.0 13.0 35.69

16 11.6 33.9 45.8 13.0 36.05

Conv3D
2 8.7 27.3 40.2 17.0 34.85

16 10.1 28.9 41.7 16.0 35.03

Conv(2+1)D
2 7.3 24.1 35.6 22.0 34.13

16 9.9 27.3 39.6 17.0 33.92

Table 2: Impact of #frames (T ) and temporal fusion function
(M). We use a 1-second clip for all experiments.

for MSRVTT retrieval and QA. This is potentially because
VQA images are typically of higher raw resolution than
MSRVTT videos (we are only able to obtain videos at a
maximum height of 240 pixels). We expect higher resolu-
tion videos could further improve model performance.

Do we need densely sampled frames? A common prac-
tice for video understanding and video+language under-
standing is to model densely sampled frames from the orig-
inal video (e.g., [4, 73] sample frames at 25 frames per
second). To understand the impact of using densely sam-
pled frames, we conduct a set of controlled experiments.
Specifically, we randomly sample a fixed-length 1-second
clip from the video, then evenly sample T={1, 2, 4, 8, 16}
frames within this clip for training. For inference, we use
the middle clip of the video. When multiple frames are used
(i.e., T>1), we use mean pooling for temporal fusion.

We also experiment with variants using additional 3D
convolutions before mean pooling: (i) Conv3D: a stan-
dard 3D convolution layer with kernel size 3, stride 1; (ii)
Conv(2+1)D: a spatial and temporal separable 3D convolu-
tion [63, 73]. Adding 3D convolutions to 2D convolutions
essentially leads to a design similar to Top-Heavy S3D ar-
chitecture [73], which shows better performance than full
3D convolutions on video action recognition and runs faster.

Results are shown in Table 2. Overall, models that use
3D convolutions perform worse than models that adopt a
simple mean pooling. For mean pooling, we observe that
using two frames provides a notable improvement over us-
ing a single frame. However, models that use more than
two frames perform similarly compared to the one using
two frames, suggesting that two frames already represent
enough local temporal information for the tasks.

Do more clips at inference help? At inference, we aggre-
gate prediction scores from multiple densely sampled clips
as the final score. To show how this strategy affects perfor-
mance, we evenly sampleNtest ∈ {1, 2, 4, 8, 16} clips from
a video and average their individual predictions at inference.
For this experiment, we provide two models trained with
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Figure 4: Impact of #inference clips (Ntest).

G Ntrain
MSRVTT Retrieval MSRVTT-

R1 R5 R10 MdR QA Acc.
- 1 12.7 34.5 48.8 11.0 36.24

Mean Pooling

2 13.3 37.1 50.6 10.0 35.94
4 14.0 38.6 51.6 10.0 35.40
8 13.4 36.4 49.7 11.0 35.76

16 15.2 39.4 53.1 9.0 35.33

Max Pooling
2 8.5 28.7 42.2 14.0 36.41

16 12.5 33.1 46.8 12.0 36.25

LogSumExp
2 15.5 38.4 52.6 9.0 36.59

16 17.4 41.5 55.5 8.0 36.16

Table 3: Impact of #training clips (Ntrain) and score aggrega-
tion function (G). All models use Ntest=16 clips for inference.

Sampling Method Ntrain
MSRVTT Retrieval MSRVTT-

R1 R5 R10 MdR QA Acc.
Dense Uniform 16 15.5 39.6 55.0 9.0 35.88

Sparse Random
1 12.7 34.5 48.8 11.0 36.24
2 15.5 38.4 52.6 9.0 36.59
4 15.7 41.9 55.3 8.0 36.67

Table 4: Sparse random sampling vs. dense uniform sampling.
All models use Ntest=16 clips for inference.

different numbers of training frames per clip: one with a
single frame and the other with two frames. Both models
use a single clip for training. Results are shown in Figure 4.
Adding more clips generally improves performance, espe-
cially the first few additions, but after a certain point perfor-
mance saturates. For example, in Figure 4 (left), MSRVTT
retrieval performance increases substantially as we use two
and four clips, compared to using a single clip; then the per-
formance gain gradually becomes marginal.

Do more clips in training help? We randomly sample
Ntrain clips and aggregate scores from the clips with aggre-
gation function G as the final score to calculate the training
loss. When multiple clips are used, information from these
samples is aggregated through multiple instance learning
to maximize the utility of these clips. To understand how
this strategy affects model performance, we evaluate model
variants that use Ntrain ∈ {1, 2, 4, 8, 16} at training. We
also consider 3 different commonly used score aggregation
functions for G: mean pooling, max pooling, and LogSum-
Exp [45]. In mean pooling and max pooling, the cross-clip
pooling is performed over logits, followed by a softmax op-
erator. In LogSumExp, logits from each clip are first fed
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Figure 5: Memory and computation cost comparison w.r.t. dif-
ferent numbers of clips (Ntrain) or frames (T ) at training. (a):
Maximum allowed batch size with fixed T=1. (b): Time cost for
a single forward and backward pass with fixed T=1, batch size 8.
(c): Maximum allowed batch size with fixed Ntrain=1. (d): Time
cost for a single forward and backward pass with fixed Ntrain=1,
batch size 8. All experiments are conducted on a single NVIDIA
V100 GPU with 32GB memory. MSRVTT retrieval performance
is also added in (b, d) for reference. Best viewed in color.

through an element-wise exponential operator, followed by
a cross-clip mean pooling. The aggregated output is further
normalized by its own sum to make it eligible as a proba-
bility distribution. For simplicity, we always use the same
aggregation function for training and inference. For a fair
comparison, all models use a single frame per clip for train-
ing and 16 clips for inference, i.e., T=1 and Ntest=16.

Results are shown in Table 3. In general, adding more
clips helps, and the second added clip gives the most per-
formance gain. For example, for models with LogSum-
Exp, Ntrain=2 improves retrieval R1 score of Ntrain=1
by 2.8%, while Ntrain=16 improves only 1.9% upon
Ntrain=2, even though it adds much more clips. As for
score aggregation function G, LogSumExp works the best.

Sparse Random Sampling vs. Dense Uniform Sampling.
At each training step, CLIPBERT randomly samples only
a single or a few short clips from a full-length video. In-
tuitively, this sparse random sampling strategy can be in-
terpreted as a type of data augmentation where different
subsets of clips for a video are used to calculate the loss
at different training steps. To show the effectiveness of
this approach, we compare CLIPBERT with a variant that
uses uniformly sampled dense clips. Specifically, we use
the same CLIPBERT architecture as before but always uses
16 uniformly sampled clips for training. Table 4 shows the
comparison. Sparse random sampling with only 4 clips out-
performs dense uniformly sampling with 16 clips across all
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Weight Initialization MSRVTT Retrieval MSRVTT-
CNN transformer R1 R5 R10 MdR QA Acc.
random random 0.3 0.4 0.9 506.0 28.05
random BERTBASE 0.0 0.2 0.7 505.0 31.72
TSN, K700 BERTBASE 5.7 22.1 33.1 23.0 35.40
ImageNet BERTBASE 7.2 23.3 35.6 21.0 35.01
grid-feat BERTBASE 7.4 21.0 30.7 26.0 35.27

image-text pre-training 10.2 28.6 40.5 17.0 35.73

Table 5: Impact of weight initialization strategy.

metrics in both retrieval and QA tasks. Meanwhile, using 4
clips is much more memory and computation efficient than
using 16 clips, as we show in the next paragraph. In ad-
dition to these two sampling approaches, it is also possible
to choose clips using content-based methods such as [72].
However, this requires an extra non-trivial selection step,
and may also remove some of the data augmentation effect
brought by random sampling.

Memory and Computation Cost. Figure 5 shows a com-
parison of memory and computation cost w.r.t. different
numbers of clips (Ntrain) or frames (T ) at training. We
observe that using more clips or more frames at train-
ing considerably increases memory demand and computa-
tional cost. For example, in Figure 5 (a), we see that the
maximum allowed batch size for a single NVIDIA V100
GPU is 190 when Ntrain=2, compared to that of 16 when
Ntrain=16. Meanwhile, in Figure 5 (b), we see that the
time cost increases almost linearly with Ntrain, while the
performance improvement on MSRVTT retrieval is less sig-
nificant. These comparisons demonstrate the efficiency and
effectiveness of the proposed sparse training strategy.

4.3. Analysis of Pre-training/End-to-end Training

Impact of Image-text Pre-training. Our model is initial-
ized with image-text pre-training on COCO and Visual
Genome Captions, to obtain better-aligned visual and tex-
tual representations. To validate the effectiveness of us-
ing image-text pre-training for weight initialization, we also
evaluate variants that use other weight initialization strate-
gies. Specifically, for CNN, we use weights from random
initialization, image classification model pre-trained on Im-
ageNet [10], frame-wise action recognition model TSN [66,
9] pre-trained on Kinetics-700 [57, 4], or detection model
grid-feat [24] pre-trained on Visual Genome [29]. For trans-
former and word embedding layers, we use weights from
random initialization or pre-trained BERTBASE model [11].
For random initialization, we use the default setup in Py-
Torch [49] and Transformer [68] libraries for CNN and
transformer layers, respectively. Results are summarized in
Table 5. We notice that randomly initializing CNN leads to
massive performance degradation or even training failure,
we hypothesize that it is mostly because of the difficulty
of training large models on relatively small datasets (e.g.,

Parameters Trainable? MSRVTT Retrieval MSRVTT-
Fv Fl R1 R5 R10 MdR QA Acc.
7 7 8.0 27.2 38.9 17.0 35.78
7 3 9.0 27.5 39.4 18.0 35.50
3 3 10.2 28.6 40.5 17.0 35.73

Table 6: Impact of end-to-end training.

MSRVTT retrieval train split: 7K videos). The best per-
formance is achieved using image-text pre-trained weights,
clearly indicating the benefit of utilizing image-text pre-
training for video-text tasks.

Impact of End-to-End Training. The standard paradigm
for video-and-language understanding is to train models
with offline extracted features, in which the task objective
does not affect the video and text encoding process. In this
work, we train our model in an end-to-end manner, allowing
the model to finetune feature representations by leveraging
task supervision. In Table 6, we compare our model with
variants that freeze portions of the parameters. Overall, the
best performance is achieved by our model, showing the im-
portance of end-to-end training. Note that all the models in
Table 6 are finetuned from our end-to-end image-text pre-
trained model, which partly resolves the multimodal feature
disconnection issue in Section 1. Thus, we expect smaller
improvement from further end-to-end finetuning.

Main Conclusions from the analyses in Section 4.2 and
Section 4.3 are summarized as follows: (i) Larger input im-
age size helps improve model performance, but the gain di-
minishes when image size is larger than 448; (ii) Sparsely
sampling 2 frames from each clip performs on par with
dense sampling 16 frames, showing that just one or two
frames are sufficient for effective video-and-language train-
ing; mean-pooling is more effective than 3D Conv when
fusing information from different frames; (iii) More clips
at inference helps improve model performance; aggrega-
tion strategy of predictions across clips affects final per-
formance; (iv) Sparse (random) sampling is more effec-
tive than dense uniform sampling while being more memory
and computation efficient; (v) Image-text pre-training bene-
fits video-text tasks; and (vi) End-to-end training improves
model performance.

4.4. Comparison to State-of-the-art

For evaluation, we compare CLIPBERT with state-of-
the-art methods on text-to-video retrieval and video ques-
tion answering tasks. We denote models using different
sampling methods at training as CLIPBERT Ntrain×T ,
(randomly sample Ntrain 1-second clips for training, each
contains T uniformly sampled frames of size L=448). We
use LogSumExp to aggregate scores from multiple clips. At
inference time, if not otherwise stated, we aggregate scores
from Ntest=16 uniformly sampled clips.
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Method R1 R5 R10 MdR
HERO [37] ASR, PT 20.5 47.6 60.9 -
JSFusion [77] 10.2 31.2 43.2 13.0
HT [46] PT 14.9 40.2 52.8 9.0
ActBERT [83] PT 16.3 42.8 56.9 10.0
HERO [37] PT 16.8 43.4 57.7 -
CLIPBERT 4×1 19.8 45.1 57.5 7.0
CLIPBERT 8×2 22.0 46.8 59.9 6.0

(a) MSRVTT 1K test set.

Method R1 R5 R10 MdR
CE [41] 16.1 41.1 - 8.3
S2VT [65] 11.9 33.6 - 13.0
FSE [80] 13.9 36.0 - 11.0
CLIPBERT 4×1 19.9 44.5 56.7 7.0
CLIPBERT 8×2 20.4 48.0 60.8 6.0

(b) DiDeMo test set.

Method R1 R5 R10 MdR
CE [41] 18.2 47.7 - 6.0
MMT [15] 22.7 54.2 93.2 5.0
MMT [15] PT 28.7 61.4 94.5 3.3
Dense [28] 14.0 32.0 - 34.0
FSE [80] 18.2 44.8 - 7.0
HSE [80] 20.5 49.3 - -
CLIPBERT 4×2∗ 20.9 48.6 62.8 6.0
CLIPBERT 4×2∗ (Ntest=20) 21.3 49.0 63.5 6.0

(c) ActivityNet Captions val1 set.

Table 7: Comparison with state-of-the-art methods on text-to-video retrieval. CLIPBERT models with different training input sam-
pling methods are denoted by Ntrain×T . We use Ntest=16 if not otherwise stated. We gray out models that used features other than
appearance and motion for a fair comparison, e.g., CE used appearance, scene, motion, face, audio, OCR, ASR features from 11 different
models. PT indicates the model is pre-trained on HowTo100M. * denotes models use 2-second clips instead of the default 1-second clips.

Method Action Transition FrameQA
ST-VQA [23] 60.8 67.1 49.3
Co-Memory [17] 68.2 74.3 51.5
PSAC [38] 70.4 76.9 55.7
Heterogeneous Memory [12] 73.9 77.8 53.8
HCRN [31] 75.0 81.4 55.9
QueST [25] 75.9 81.0 59.7
CLIPBERT 1×1 (Ntest=1) 82.9 87.5 59.4
CLIPBERT 1×1 82.8 87.8 60.3

(a) TGIF-QA test set.

Method Accuracy
ST-VQA [23] (by [12]) 30.9
Co-Memory [17] (by [12]) 32.0
AMU [74] 32.5
Heterogeneous Memory [12] 33.0
HCRN [31] 35.6
CLIPBERT 4×1 37.0
CLIPBERT 8×2 37.4

(b) MRSVTT-QA test set.

Method Accuracy
SNUVL [78] (by [77]) 65.4
ST-VQA [23] (by [77]) 66.1
CT-SAN [79] (by [77]) 66.4
MLB [27] (by [77]) 76.1
JSFusion [77] 83.4
ActBERT [83] PT 85.7
CLIPBERT 4×1 87.9
CLIPBERT 8×2 88.2

(c) MRSVTT multiple-choice test.

Table 8: Comparison with state-of-the-art methods on video question answering.

Text-to-Video Retrieval. Table 7 summarizes results on
text-to-video retrieval. In Table 7a, CLIPBERT achieves
significant performance gain over existing methods on
MSRVTT retrieval, including HT [46], ActBERT [83], and
HERO [37], which are pre-trained on 136M clip-caption
pairs from HowTo100M [46]. Under a fair compari-
son, CLIPBERT 4×1 outperforms HERO [37] by 3.0%
on R@1. Note that HERO uses SlowFast [14] features
extracted from full-length videos at a very dense frame
rate of 21 FPS (i.e., on average 310 frames per video
for MSRVTT), while CLIPBERT 4×1 uses only 4 ran-
domly sampled frames. When more frames are used, CLIP-
BERT 8×2 achieves even higher performance, surpass-
ing HERO by 5.2%. Compared to the HERO ASR model
that uses extra input from Automatic Speech Recognition
(ASR), CLIPBERT still obtains 1.5% higher R1 score.

Similarly, on DiDeMo and ActivityNet Captions
paragraph-to-video retrieval tasks (Table 7b and Table 7c),
we notice our best CLIPBERT models outputform CE [41]
by 4.3% and 3.1% on R1, respectively, despite CE’s use of
appearance, scene, motion, face, audio, OCR, ASR features
densely extracted from 11 different models. ActivityNet
Caption videos are on average 180-second long. In Table 7c
we show CLIPBERT performs competitively with existing
methods that model long-range relations in this dataset. Es-

pecially, CLIPBERT obtains 0.8% higher R1 than HSE [80]
and is competitive compared to MMT [15] that uses extra
audio features3, even though CLIPBERT 4×2∗ (Ntest=20)
samples only 8-second clips from 180-second videos at
each training step, and uses only 40-second content for in-
ference. We expect CLIPBERT’s performance to be further
improved by sampling more clips during training and infer-
ence. Meanwhile, we also encourage future work to explore
combining extra input signals, such as audio, into the CLIP-
BERT framework for better performance.

Video Question Answering. Table 8 shows evaluation re-
sults on video question answering. Across all three tasks,
CLIPBERT achieves significant performance gain. In Ta-
ble 8a, CLIPBERT 1×1 outperforms prior state-of-the-art
QueST [25] by 6.9%, 6.8%, and 0.6% on TGIF-QA Ac-
tion, Transition, and FrameQA tasks, respectively. This
is especially surprising considering CLIPBERT 1×1 uses
only a single randomly sampled frame from the videos at
each training step, while QueST uses 10 uniformly sampled
frames. Moreover, when using only a single frame (the mid-
dle frames of the videos) for inference, CLIPBERT 1×1
(Ntest=1) already far outperforms QueST on Action and
Transition tasks, and is on par with QueST on FrameQA.

3[15] shows that adding audio features greatly improves performance.
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In Table 8b, CLIPBERT 4×1 outperforms HCRN [31] by
1.4% on MSRVTT-QA. Note that HCRN adopts a sophisti-
cated hierarchical relation modeling network over the entire
video sequence of 24 clips at training time, while we use
only four randomly sampled frames. Using more frames
further increases this performance gap to 1.8%. Table 8c
shows CLIPBERT 8×2 improves ActBERT [83] model
pre-trained on HowTo100M by 2.5%, on MSRVTT mul-
tiple choice test task.

5. Conclusion

We present CLIPBERT, a generic framework for end-to-
end video-and-language learning, which adopts sparse sam-
pling to use only a few sampled short clips from the videos
at each training step. Experiments across diverse tasks show
that CLIPBERT outperforms (or is on par with) state-of-
the-art methods with densely sampled offline features, sug-
gesting that the “less is more” principle is highly effective in
practice. Comprehensive ablation studies reveal several key
factors that lead to this success, including sparse sampling,
end-to-end training, and image-text pre-training.
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ported at UNC by NSF Award #1562098, DARPA KAIROS
Grant #FA8750-19-2-1004, ARO-YIP Award #W911NF-
18-1-0336, and Microsoft Investigator Fellowship. The
views contained in this article are those of the authors and
not of the funding agency.

A. Additional Experiments

Visual Question Answering. As CLIPBERT is designed
based on 2D CNN, and is pre-trained on image-text cor-
pus, it is also directly applicable to image-text downstream
tasks, such as image-based question answering. We show
CLIPBERT’s performance on VQA 2.0 dataset [19] in Ta-
ble 9. The model is finetuned from the image-text pre-
trained weights on 8GPUs for 13 epochs, with batch size
32 and learning rate 5e-5. CLIPBERT shows a reason-
able performance compared to the strong pre-training base-
lines. Note that CLIPBERT uses grid features [24, 22] in-
stead of the commonly used region features, which is much
more computation efficient, e.g., extracting grid features is
around 80× faster than extracting region features according
to the computation time reported in [24].

B. Downstream Task Adaptation

Our CLIPBERT is quite generic, once trained, it can
be easily adopted and transferred for various downstream
tasks. In particular, in this work, we focus on text-to-video
retrieval and video question answering.

Method feature test-dev test-std
BUTD [1] R 65.32 65.67
grid-feat [24] G 66.47 -
ViLBERT [44] R 70.55 70.92
VL-BERT [58] R 71.16 -
Pixel-BERT [22] G 71.35 71.42
LXMERT [61] R 72.42 72.54
UNITER [1] R 72.70 72.91
Oscar [39] R 73.16 73.44
CLIPBERT 1×1 G 69.08 69.43

Table 9: Comparison with state-of-the-art methods on VQA.
G stands for grid features, R stands for region features.

Text-to-video Retrieval. We use a two-layer MLP with the
last layer [CLS] token hidden state for a two way (i.e.,
matched or not matched) classification for retrieval. We use
LogSumExp loss for training. Denote the two-way classifi-
cation logit output for clip τi from the video associated with
the j-th example as g(j)

τi ∈ R2, where i = 1, . . . , Ntrain for
training (i = 1, . . . , Ntest for inference; see Section 3 of the
main paper). The LogSumExp prediction p(j) ∈ R2 is de-
fined as:

p(j) =

∑Ntrain
i=1 eg

(j)
τi

sum(
∑Ntrain
i=1 eg

(j)
τi )

. (5)

We then use a negative log likelihood loss for training:

L = − 1

|D|

|D|∑
j=1

logp(j)[yj ], (6)

where D is the dataset, yj is the index of the ground-truth
answer for the j-th example.

We conduct experiments on three popular text-to-video
retrieval datasets, MSRVTT [75], DiDeMo [2], and Activi-
tyNet Captions [28]. Table 10 shows the training details for
models on each of the datasets.

Dataset #Epochs Bsz ×Grad-Accu ×#GPUs LR
MSRVTT 20 16×1×8 5e-5
DiDeMo 20 8×4×8 5e-5
ActivityNet Captions 80 16×2×8 5e-5

Table 10: Training details for text-to-video retrieval tasks. Bsz
is short for batch size. Grad-Accu stands for gradient accumula-
tion steps. LR means initial learning rate.

Video Question Answering. Similar to text-to-video re-
trieval task, we take the last layer [CLS] token hidden state
through a two-layer MLP for classification. We use Log-
SumExp to aggregate prediction from multiple clips to cal-
culate loss. The formulation of LogSumExp loss is simlar
to Equation 5 except that the dimension of gτi equals to the
number of answer candidates.
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We conduct experiments on three video QA datasets,
TGIF-QA [23], MSRVTT-QA [74], and MSRVTT MC
Test [77]. For TGIF-QA, we evaluate three sub-tasks,
i.e., Action, Transition, and FrameQA. We train a sepa-
rate model for each of the evaluated TGIF-QA tasks. For
MSRVTT MC Test, as it uses the same training set as
the MSRVTT retrieval task, we directly use the trained re-
trieval model to rank the five candidate answers. Table 10
shows the training details for models on TGIF-QA tasks and
MSRVTT-QA.

Dataset #Epochs Bsz×Grad-Accu ×#GPUs LR
TGIF-QA Action 55 32×1×8 1e-4
TGIF-QA Transition 15 32×1×8 1e-4
TGIF-QA FrameQA 15 32×1×8 1e-4
MSRVTT-QA 10 16×1×4 5e-5

Table 11: Training details for video question answering tasks.
Bsz is short for batch size. Grad-Accu stands for gradient accu-
mulation steps. LR means initial learning rate.
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