
FedPD: A Federated Learning Framework with Optimal Rates and

Adaptivity to Non-IID Data

Xinwei Zhang†, Mingyi Hong†, Sairaj Dhople†, Wotao Yin‡ and Yang Liu# ∗

July 9, 2020

Abstract

Federated Learning (FL) is popular for communication-efficient learning from distributed data. To
utilize data at different clients without moving them to the cloud, algorithms such as the Federated
Averaging (FedAvg) have adopted a “computation then aggregation” (CTA) model, in which multiple
local updates are performed using local data, before sending the local models to the cloud for aggregation.
These algorithms fail to work when facing practical challenges, e.g., the local data being non-identically
independent distributed. In this paper, we first characterize the behavior of the FedAvg algorithm, and
show that without strong and unrealistic assumptions on the problem structure, it can behave erratically
(e.g., diverge to infinity). Aiming at designing FL algorithms that are provably fast and require as few
assumptions as possible, we propose a new algorithm design strategy from the primal-dual optimization
perspective. Our strategy yields algorithms that can deal with non-convex objective functions, achieve
the best possible optimization and communication complexity (in certain sense), and deal with full-batch
and mini-batch local computation models. Importantly, the proposed algorithms are communication
efficient, in that the communication effort can be reduced when the level of heterogeneity among the
local data also reduces. To our knowledge, this is the first algorithmic framework for FL that achieves
all the above properties.

1 Introduction

Federated learning (FL)—a distributed machine learning approach proposed in [1]—has gained popularity
for applications involving learning from distributed data. In FL, a cloud server (the “server”) can communicate
with distributed data sources (the “agents”). The goal is to train a global model that works well for all
the distributed data, but without requiring the agents to reveal too much local information. Since its
inception, the broad consensus on FL’s implementation appears to involve a generic “computation then
aggregation” (CTA) protocol. This involves the following steps: S1) the server sends the model x to the
agents; S2) the agents update their local models xi’s for several iterations based on their local data; S3)
the server aggregates xi’s to obtain a new global model x. It is widely acknowledged that multiple local
steps save communication efforts, while only transmitting local models protects data privacy [2].

Even though the FL paradigm has attracted significant research from both academia and industry,
and many algorithms such as Federated Averaging (FedAvg) have been proposed, several attributes are
not clearly established. In particular, the commonly adopted CTA protocol poses significant theoretical
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and practical challenges to designing effective FL algorithms. This work attempts to provide a deeper
understanding of FL, by raising and resolving a few theoretical questions, as well as by developing an
effective algorithmic framework with several desirable features.
Problem Formulation. Consider the vanilla FL solving the following problem:

min
x∈Rd

f(x) ,
1

N

N∑
i=1

fi(x), with fi(x) , wi
∑
ξi∈Di

F (x; ξi), (1)

where N is the number of agents; ξi denotes one sample in data set Di stored on the i-th agent; F : Rd → R
is the “loss function” for the i-th data point; and wi > 0 is a “weight coefficient” (a common choice is
wi = 1/|Di| [2]). We assume that the loss function takes the same form across different agents, and
furthermore, we denote M :=

∑N
i=1 |Di| to be the total number of samples. One can also consider a related

setting, where each fi(x) represents the expected loss [3]

fi(x) , Eξi∈Pi
F (x; ξi), (2)

where Pi denotes the data distribution on the i-th agent. Throughout the paper, we will make the following
blanket assumptions for problem (1):

A 1. Each fi(·), as well as f in (1) is L–smooth:

‖∇fi(x)−∇fi(y)‖ ≤ L ‖x− y‖ , ‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ , ∀ x,y ∈ Rd, i = 1, . . . , N.

A 2. The objective of problem (1) is lower bounded: f(x) ≥ c > −∞, ∀ x ∈ Rd.

In addition to these standard assumptions, state-of-the-art efforts on analysis of FL algorithms oftentimes
invoke a number of more restrictive assumptions.

A 3. (Bounded Gradient (BG)) The gradients ∇fi’s are upper bounded (by a constant G > 0)

‖∇fi(x)‖2 ≤ G2, ∀ x ∈ Rd,∀ i = 1, . . . , N. (3)

A 4. (I.I.D. Data) Either one of the following holds:

E∇[fi(x)] = ∇f(x), ∀ x ∈ Rd, ∀ i = 1, . . . , N, (4)

N∑
i=1

‖∇fi(x)‖2 ≤ B2 ‖∇f(x)‖2 , ∀ x ∈ {x ∈ Rd | ‖∇f(x)‖2 > ε}. (5)

Let us comment on the above assumptions.
First, the BG assumption typically does not hold for (1), in particular, fi(x) = ‖Aix−bi‖2 (where Ai

and bi are related to data). However, the BG assumption is critical for analyzing FedAvg-type algorithms
because it bounds the distance traveled after multiple local iterates. Second, (4) is typically used in FL
to characterize homogeneity about local data [4, 5]. However, an assumption of this type does not hold
for FL applications where the data (such as medical records, keyboard input data) are generated by the
individual agents [1, 3, 6, 7, 8, 9]. A reasonable relaxation to this i.i.d. assumption is the following notion
of δ-non-i.i.d.-ness of the data distribution.
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A 5. (δ-Non-I.I.D. Data) The local functions are called δ-non-i.i.d. if either one of the equivalent conditions
below holds:

‖∇fi(x)−∇fj(x)‖ ≤ δ, ∀ x ∈ Rd, ∀ i 6= j, or ‖∇fi(x)−∇f(x)‖ ≤ δ ∀ x ∈ Rd, ∀ i. (6)

By varying δ from 0 to ∞, (6) provides a characterization of data non-i.i.d.-ness. In Appendix A, we
give a few examples of loss functions with different values of δ. Note that the second inequality in (6) is
often used in decentralized optimization to quantify the similarity of local problems [10, 11]. Third, (5)
does not hold for many practical problems. To see this, note that this condition is parameterized by ε,
which is typically the desired optimization accuracy [12]. Since ε can be chosen arbitrarily small, (5)
essentially requires that the problem is realizable, that is, ‖∇f(x)‖ approaches zero only when all the local
gradients approach zero at x, that is, when the local data are “similar”.

Finally, we mention that our objective is to understand FL algorithm from an optimization perspective.
So we say that a solution x is an ε-stationary solution if the following holds:

‖∇f(x)‖2 ≤ ε. (7)

We are interested in finding the minimum system resources required, such as the number of local updates,
the number of times local variables are transmitted to the server, and the number of times local samples
F (x; ξi)’s are accessed, before computing an ε-solution (7). These quantities are referred to as local
computation, communication complexity, and sample complexities, respectively.
Questions to address Despite extensive recent research, the FL framework, and in particular, the CTA
protocol is not yet well understood. Below, we list four questions regarding the CTA protocol.
Q1 (local updates). What are the best local update directions for the agents to take so as to achieve the
best overall system performance (stability, sample complexity, etc.)?
Q2 (global aggregation). Can we use more sophisticated processing in the aggregation step to help improve
the system performance (sample or communication complexity)?
Q3 (communication efficiency). If multiple local updates are preformed between two aggregation steps, will
it reduce the communication overhead?
Q4 (assumptions). What is the best performance that the CTA type algorithms can achieve while relying
on a minimum set of assumptions about the problem?

Although these questions are not directly related to data privacy, another important aspect of FL, we
argue that answering these fundamental questions can provide much needed understanding on algorithms
following the CTA, and thus the FL approach. A few recent works (to be reviewed shortly) have touched
upon those questions, but to our knowledge, none of them has conducted a thorough investigation of the
questions listed above.
Related Works. We start with a popular method following the CTA protocol, the FedAvg in Algorithm
1, which covers the original FedAvg [1], the Local SGD [4], PR-SGD [13, 3] and the RI-SGD [14] among
others.

Algorithm 1 FedAvg Algorithm

Initialize: x0
i , x0, i = 1, . . . , N

for r = 0, . . . , T − 1 (stage) do
for q = 0, . . . , Q− 1 (iteration) do

either Option 1 (Local SGD), for all i
or Option 2 (Local GD), for all i

end for
Global averaging: xr+1 = 1

N

∑N
i=1 x

r,Q
i

Update agents’ xr+1,0
i = xr+1, i = 1, . . . , N

end for

In FedAvg, T is the total stage number, Q the
number of local updates, r the index of the stage, q the
index of the inner iteration, and ηr,q’s are the stepsizes.
It has two options for local updates:

Option 1: Sample ξr,qi form Di,
Set xr,q+1

i , xr,qi − η
r,q∇F (xr,qi ; ξr,qi ). (8)

Option 2 : xr,q+1
i , xr,qi − η

r,q∇fi(xr,qi ). (9)
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Table 1: Convergence rates of FL algorithms, measured by total rounds of communication (RC), number of local
updates (LC), and number of accessed sample (AS), before reaching ε-stationary solution. DN refers to degree of
non-i.i.d, BG refers to bounded gradient, NC is non-convex, µSC means µ-Strongly Convex. p is the function of
O( ε

δ2 ) illustrated in Fig. 1. ?The i.i.d. assumption of FedProx is described in (5); VRL-SGD needs assumption of
bounded variance of the stochastic gradient, which in our finite sum setting implies the BG.

Algorithm Convexity DN BG RC (T ) LC (QT ) AS

FedAvg [4] µSC 0 No O
(
1/ε1/2

)
O(1/ε) O(1/ε)

FedAvg [9] µSC - Yes O (1/ε) O(1/ε) O(1/ε)
Coop-SGD [5] NC 0 No O(1/ε) O(1/ε2) O(1/ε2)
MPR-SGD [3] NC - Yes O(1/ε3/2) O(1/ε2) O(1/ε2)
Local-GD [15] C - No O(1/ε3/2) O(1/ε2) O(M/ε2)
FedProx [12] NC -? No O(1/ε) O(1/ε2) O(1/ε2)
F-SVRG[17] NC - No O(1/ε) O(Q/ε) O(M/ε+Q/ε)
VRL-SGD[16] NC - Yes? O(1/ε) O(1/ε2) O(1/ε2)
Fed-PD-GD NC δ > 0 No O ((1− p)/ε) O (log(1/ε)/ε) O(M log(1/ε)/ε)
Fed-PD-SGD NC δ > 0 No O((1− p)/ε) O(1/ε2) O(1/ε2)

Fed-PD-VR NC - No O(1/ε) O(Q/ε) O(M +
√
M/ε)

Many recent works are extensions of FedAvg. The
algorithm proposed in [3] adds momentum to the algorithm. In [14], the data on the local agents are
separated into blocks and shared with other agents. In [15] the local GD version (9) is studied. In [5], a
cooperative-SGD is considered; it includes virtual agents, extra variables, and relaxes the parameter server
topology.

It is pertinent to consider how these algorithms address questions Q1–Q4. For Q1, most FedAvg-type
algorithms perform multiple local (stochastic) GD steps to minimize the local loss function. However, we
will see shortly that in many cases, successive local GD steps lead to algorithm divergence. For Q2, most
algorithms use simple averaging, and there is little discussion on whether other types of (linear) processing
will be helpful. For Q3, a number of recent works such as [3, 15] show that, for non-convex problems, to
achieve ε-solution (7), a total of O(1/ε3/2) aggregation steps are needed. However, it is not clear if this
achieves the best communication complexity. As for Q4, the FedAvg-type algorithm typically requires
either some variant of the BG assumption, or some i.i.d. assumption, or both; See Table 1 rows 1–5 for
detailed discussions.

A number of more recent works have improved upon FedAvg in various aspects. FedProx [12] addresses
Q1 and Q4 by perturbing the update direction. This algorithm does not need the BG, but it still requires
the i.i.d. assumption (5). The VRL-SGD proposed in [16] addresses Q1 and Q4 by using the variance
reduction (VR) technique to update the directions for local agents and achieves O(1/ε) communication
complexity without the i.i.d. assumption. F-SVRG [17] is another recent algorithm that uses VR. This
algorithm does not follow the CTA protocol as the agents have to transmit the local gradients, but it
does not require A3 and A4. The PR-SPIDER [18] further improves upon FSVRG by reducing sample
complexity (SC) from O(M/ε) to O(

√
M/ε) (where M is typically larger than 1/ε). Although FSVRG

and PR-SPIDER neither require the BG or the i.i.d. assumptions, they require the agents to transmit
local gradients to the server and thus do not follow the CTA protocol. This is undesirable, as it has been
shown that local gradient information can leak private data [19]. Additionally, questions Q2-Q3 are not
addressed in these works.
Our Main Contributions. First, we address Q1-Q4 and provide an in-depth examination of the CTA
protocol. We show that algorithms following the CTA protocol that are based on successive local gradient
updates, the best possible communication efficiency is O(1/ε); neither additional local processing nor
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general linear processing can improve this rate. We then show that the BG and/or i.i.d. data assumption
is important for the popular FedAvg to work as intended.

Our investigation suggests that the existing FedAvg-based algorithms are (provably) insufficient in
dealing with many practical problems, calling for a new design strategy. We then propose a meta-algorithm
called Federated Primal-Dual (FedPD), which also follows the CTA protocol and can be implemented in
several different forms with desirable properties. In particular, it i) can deal with the general non-convex
problem, ii) achieve the best possible optimization and communication complexity when data is non-i.i.d.,
iii) achieve convergence under only Assumptions A1– A2.

Figure 1: Relation of the percentage of comm.
savings, accuracy ε, heterogeneity δ; Fixing ε,
when the data is heterogeneous (left) the curve
is linear, while the data is homogeneous (right)
the curve is logarithmic. Details in Sec. 3.2.

Most importantly, the communication pattern of the
proposed algorithm can be adapted to the degree of
non-i.i.d.-ness of the local data. That is, we show that under
the δ-non-i.i.d. condition (6), communication saving and
data heterogeneity interestingly exhibit a linear-logarithmic
relationship; see Fig. 1 for an illustration. To our knowledge,
this is the first algorithm for FL that achieves all the above
properties.

2 Addressing Open Questions

We first address Q2–Q3. Specifically, for problems satisfying
A1–A2, does performing multiple local updates or using
different ways to combine local models reduce communication
complexity? We show that such a saving is impossible; there
exist problems satisfying A1–A2, yet no matter what types of linear combinations the server performs, as
long as the agents use local gradients to update the model, it takes at least O(1/ε) communication rounds
to achieve an ε-stationary solution (7). Consider the following generic CTA protocol. Let t denote the
index for communication rounds. Between two rounds t − 1 and t, each agent performs Q local updates.
Denote xt−1,q

i to be the q-th local update. Then, xt−1,Q
i ’s are sent to the server, combined through a

(possibly time-varying) function V t(·) : RNd → Rd, and sent back. The agents then generate a new iterate,
by combining the received message with past gradients using a (possibly time-varying) function W t

i (·):

xt = V t({xt−1,Q
i }Ni=1), xt,0i = xt, ∀ i ∈ [N ], (10a)

xt,qi ∈W
t
i

(
{xr,ki , {∇F (xr,qi ; ξi)}ξi∈Di

}k∈[q−1],r∈[t]

)
, ∀ q ∈ [Q], ∀ i ∈ [N ]. (10b)

We focus on the case where the V t(·)’s and W t
i (·)’s are linear operators, which implies that xt,qi can use all

past iterates and (sample) gradients for its update. Clearly, (10) covers both the local-GD and local-SGD
versions of FedAvg as special cases. In the following, we provide an informal statement of the result. The
formal statement and the full proof are given in Appendix B and Theorem 2.

Claim 2.1. (Informal) Consider any algorithm A that belongs to the class described in (10), with
V t(·) and W t

i (·)’s being linear and possibly time-varying operators. Then, there exists a non-convex
problem instance satisfying Assumptions 1–2 such that for any Q > 0, algorithm A takes at least O(1/ε)
communication rounds to reach an ε-stationary solution satisfying (7).

Remark 1. The proof technique is related to those developed from both classical and recent works that
characterize lower bounds for first-order methods, in both centralized [20, 21] and decentralized [22, 23]
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settings. The main technical difference is that our processing model (10) additionally allows local processing
iterations, and there is a central aggregator. Our goal is not to establish lower bounds on the number of
(centralized) gradient access, nor to show the optimal graph dependency, but to characterize (potential)
communication savings when allowing multiple steps of local processing.

In the proof, we construct difficult problem instances in which fi’s are not i.i.d. (more precisely, δ in
assumption (4) grows with the total number of iterations T ). Then we show that it is necessary to aggregate
(thus communicate) to make any progress. On the other hand, it is obvious that in another extreme case
where the data are 0-non-i.i.d., only O(1) communication rounds are needed. An open question is: when
the local data are related to each other, i.e., δ lies between 0 and infinity, is it possible to reduce the total
communication rounds? This question is addressed below in Sec. 3. �

We now address Q1 and Q4. We consider the FedAvg Algorithm 1, and show that BN and/or
i.i.d. assumptions are critical for them to perform well. Our result suggests that, despite its popularity,
components in FedAvg, such as the pure local (stochastic) gradient directions and linear aggregation are
not compatible with each other. The proof of the results below are given in Appendix C.

Claim 2.2. Fix any constant η > 0, Q > 1 for Algorithm 1. There exists a problem that satisfies A1 and
A2 but fails to satisfy A3 and A4, on which FedAvg diverges to infinity.

Remark 2. A recent work [15] has shown that FedAvg with constant stepsize η > 0 can only converge
to a neighborhood of the global minimizer for convex problems. Moreover, the error to the global optima is
related to Q and the degree of non-i.i.d.-ness as measured by the size of

∑N
i=1 ‖∇fi(x?)‖

2 where x? is the
global optimal solution. On the other hand, our result indicates that when fi’s are non-convex, FedAvg
can perform much worse without the BN and the i.i.d. assumption. Even if Q = 2 and there exists a
solution such that

∑N
i=1 ‖fi(x̂)‖2 = 0, FedAvg (with constant stepsize η) diverges and the iteration can go

to ∞. �
One may think that using a constant stepsize is the culprit for the divergence in Claim 2.2. In fact,

we can show that having BG or not can still impact the performance of FedAvg, even when diminishing
stepsize is used. In particular, we show in Appendix D, that FedAvg converges under the BG assumption
for any diminishing stepsize, but without it, the choice of the stepsize can be significantly restricted.

3 The FedPD Framework

The previous section reveals a number of properties about FedAvg and, broadly speaking, the CTA protocol.
But why does FedAvg only work under very restrictive conditions? Is it because the local update directions
are not chosen correctly? Is it possible to make it work without any additional assumptions? Can we reduce
communication effort when the local data becomes more i.i.d.?

In this section, we propose a meta-algorithm called Federated Primal-Dual (FedPD), which can be
specialized into different sub-variants to address the above questions. These algorithms possess a few
desirable features: They can achieve the best optimization and communication complexity when data
is non-i.i.d. (i.e., achieving the bounds in Claim 2.1); they only require A1 –A2, while being able to
utilize both full or sampled local gradients. Most importantly, the communication pattern of the proposed
algorithm can be made adaptive to the degree of data non-i.i.d.-ness across the agents.
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3.1 The Proposed Algorithm

Our algorithm is based on the following global consensus reformulation of the original problem (1):

min
x0,xi

1

N

N∑
i=1

fi(xi), s.t. xi = x0, ∀i ∈ [N ]. (11)

Similar to traditional primal-dual based algorithms [24], the idea is that, when relaxing the equality
constraints, the resulting problem is separable across different nodes. However, different from ADMM, the
agents can now perform either a single (or multiple) local update(s) between two communication rounds.
Importantly, such flexibility makes it possible to adapt the communication frequency to the degree of
δ-non-i.i.d.-ness of the local data. In particular, we identify that under δ-non-i.i.d. (4), the fraction ε/δ2 is
the key quantity that determines communication saving; see Fig. 1. Intuitively, significant reduction can
be achieved when δ is smaller than ε; otherwise, the reduction goes to zero linearly as δ increases. To our
knowledge, none of the existing ADMM based algorithms, nor FL based algorithms, are able to provably
achieve such a reduction.

To present our algorithm, let us define the augmented Lagrangian (AL) function of (11) as

L(x0:N , λ) ,
1

N

N∑
i=1

Li(x0,xi, λi), Li(xi,x0, λi) , fi(xi) + 〈λi,xi − x0〉+
1

2η
‖xi − x0‖2 .

Fixing x0, the AL is separable over all local pairs {(xi, λi)}. The key technique in the design is to specify
how each local AL Li(·) should be optimized, and when to perform model aggregation.

Federated primal-dual algorithm (FedPD) captures the main idea of the classical primal-dual based
algorithm while meeting the flexibility need of FL; see Algorithm 2. In particular, its update rules share
a similar pattern as ADMM, but it does not specify how the local models are updated. Instead, an
oracle Oraclei(·) is used as a placeholder for local processing, and we will see that careful instantiations
of these oracles lead to algorithms with different properties. Importantly, we introduce a critical constant
p ∈ [0, 1), which determines the frequency at which the aggregation and communication steps are skipped.
In Algorithm 3 and Algorithm 4, we provide two useful examples of the local oracles.

In Algorithm 3, Qi’s are chosen so that the local problems are solved accurately enough to satisfy:∥∥∇xiL(xr+1
i ,xr0,i, λ

r
i )
∥∥2 ≤ ε1. (12)

We provide two ways for solving this subproblem by using GD and SGD, but any other solver that achieves
(12) can be used. For the SGD version, the stochastic gradient is defined as

hi(x
r,q
i ; ξr,qi ) , ∇F (xr,qi ; ξr,qi ), with ξr,qi ∼ Di, (13)

where ∼ denotes uniform sampling. Despite the simplicity of the local updates, we will show that using
Oracle I makes FedPD adaptive to the non-i.i.d. parameter δ.

In Algorithm 4, the oracle applies the variance reduction technique to reduce the sample complexity.
The detailed descriptions and the analyses are given in Appendix G due to the space limitation.

3.2 Convergence and Complexity Analysis

We analyze the convergence of FedPD with Oracle I. The detailed proofs are given in Appendix F. The
convergence analysis of FedPD with an alternative Oracle is given in Appendix G
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Algorithm 2 Federated Primal-Dual Algorithm

Input: x0, η, p, T,Q1, . . . , QN
Initialize: x0

0 = x0,
for r = 0, . . . , T − 1 do

for i = 1, . . . , N in parallel do
Local Updates:
xr+1
i = Oraclei(Li(xri ,xr0,i, λri ), Qi)
λr+1
i = λri + 1

η (xr+1
i − xr0,i)

xr+0,i = xr+1
i + ηλr+1

i

end for
With probability 1− p:

Global Communicate:
xr+1
0 = 1

N

∑N
i=1 x

r+
0,i

xr+1
0,i = xr+1

0 , i = 1, . . . , N
With probability p:

Local Update: xr+1
0,i , xr+0,i

end for

Algorithm 3 Oracle Choice I

Input: Li(xri ,xr0,i, λri ), Qi
Initialize: xri,0 = xri ,
Option I (GD)
for q = 0, . . . , Qi − 1 do
xr,q+1
i = xr,qi − η1∇xiL(xr,qi ,xr0,i, λ

r
i )

end for
Option II (SGD)
for q = 0, . . . , Qi − 1 do

xr,q+1
i = xr,qi − η1(hi(x

r,q
i ; ξr,qi ) + λri + 1

η (xr,qi − xr0,i))
end for
Output: xr+1

i , xr,Qi

i

Theorem 1. Suppose A1 –A2 hold. Consider FedPD with Oracle I, where Qi are selected by (12).
Case I) Suppose A5 holds with δ =∞. Set 0 < η <

√
5−1
4L , p = 0. Then we have:

1

T

T∑
r=0

‖∇f(xr0)‖2 ≤ C2

T
D0 + C4ε1, with D0 := f(x0

0)− f(x?).

Case II) Suppose 0 < η <
√

5−1
4L , 0 ≤ p < 1, and A5 holds with a finite δ. Then we have:

1

T

T∑
r=0

E ‖∇f(xr0)‖2 ≤ C2

T
D0 +

η(N − 1)C5(1− C1/(1−p)
3 )2p(p2(3 + Lη)2 + 4)

N(1− 2Lη − p(1 + Lη))2
(δ2 + ε1) + C4ε1. (14)

Here C2, C4, C5 > 0 are constants independent of T, δ, p; C3 := p(1+Lη)+Lη
1−Lη ≥ 0.

Remark 3. (Communication complexity) Case I says if one does not skip communication (p = 0),

then to achieve ε-stationarity (i.e.,
∥∥∇f(xt0)

∥∥2 ≤ ε for some r ∈ (1, T )), they need to set T = 1/(2C2D0ε),
ε1 = ε/(2C4), and the total communication rounds is T .
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In Case II, the second term on the right hand side of (14) involves both δ and p, so we can select
them appropriately to reduce communication while maintaining the same accuracy. Specifically, we choose
ε1 = min{ε/(4C4), δ2} and T = 1/(2C2D0ε). Then we have

C(p) , η
(1− C1/(1−p)

3 )2p(p2(3 + Lη)2 + 4)

(1− 2Lη − p(1 + Lη))2
≤ ε

3δ2
.

Then we can achieve the same ε-accuracy as Case I. The communication rounds here is T (1− p).
The relation between the saving p and ε

δ2
is showed in Table 2. Roughly speaking, p is inversely

proportional to degree of non-i.i.d-ness δ2 when δ2 ∈ (O(ε),∞); further, p→ 1 at a log-rate when δ2 → 0.
Our result also indicates that, when using stage-wise training for neural networks, the algorithm can
communicate less at the early stages since they typically have lower accuracy target to enable larger
stepsizes [25].

Table 2: The relation between p and ε
δ2 with fixed η =

√
5−1
8L .

Range of p C3 C(p) p as function of ε
δ2 Relation

[0, 1−2Lη1+Lη ) < 1 ≈ 12ηp 1
36η

ε
δ2 Linear

[ 1−2Lη1+Lη , 1) ≥ 1 ≈ 14ηC
2/(1−p)
3 1− 2/ log( 1

42η
ε
δ2 ) Log

Remark 4. (Computation complexity) To achieve ε accuracy, we need both T = O(1/ε) and
ε1 = O(ε). As the local AL is strongly convex with respect to xi, optimizing it to ε accuracy requires
O(log(ε)) iterations for GD and O(1/ε) for SGD [26]. So the total number of times that the local gradients
(respectively, stochastic gradients) are accessed is given by O(1/ε× log(1/ε)) (respectively, O(1/ε2)).

We conclude this section by noting that the above communication and computation complexity results
we have obtained are the best so far among all FL algorithms for non-convex problems satisfying A1 – A2.
Please see the last three rows of Table 1 for a summary of the results.

3.3 Connection with Other Algorithms

Before we close this section, we discuss the relation of FedPD with a few existing algorithms.
The FedProx/FedDANE In FedProx [12] the agents optimize the following local objective: fi(xi) +
ρ
2 ‖xi − xr0‖

2. This fails to converge to the global stationary solution. In contrast, FedPD introduces extra
local dual variables {λi} that record the gap between the local model xi and the global model x0 which
help the global convergence. FedDANE [27] also proposes a way of designing the subproblem by using the
global gradient, but this violates the CTA protocol. Compared with these two algorithms, the proposed
FedPD has weaker assumptions, and it achieves better sample and/or communication complexity.
Event Triggering Algorithms. A number of recent works such as Lazily Aggregated Gradient (LAG)
[28] and COLA [29] have been proposed to occasionally skip message exchanges among the agents to save
communication. In LAG, each agent receives the global model every iteration, and decides whether to send
some local gradient differences by checking certain conditions. Since gradient information is transmitted,
LAG does not belong to the algorithm class (10). When the local problems are unbalanced, in the sense
that the discrepancy between the local Lipschitz gradients Li’s is large, then the agents with smaller Li’s
can benefit from the lazy aggregation. Meanwhile, instead of measuring whether the local problems are
balanced, the δ-non-i.i.d. criteria characterizes if local problems are similar by measuring the uniform
difference between arbitrary pairs of the local problems. If the data is i.i.d., then the agents benefit equally
from the communication reduction.
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(a) Stationary gap of FedAvg, FedProx and
FedPD; weakly non-i.i.d. data.

(b) Stationary gap of FedAvg, FedProx and
FedPD; strongly non-i.i.d. data.

Figure 2: The convergence result of the algorithms on penalized logistic regression with weakly and strongly non-i.i.d.
data with respect to the number of communication rounds.

4 Numerical Experiments

In the first experiment, we show the convergence of the proposed algorithms on synthetic data with FedAvg
and FedProx as baselines. We use the non-convex penalized logistic regression [30] as the loss function. We
use two ways to generate the dataset, in the first case (referred to as the “weakly non-i.i.d” case), the data
is generated in an i.i.d. way. In the second case (referred to as the “strongly non-i.i.d” case), we generate
the data using non-i.i.d. distribution. In both cases there are 400 samples on each agent with total 100
agents.

We run FedPD with Oracle I (FedPD-SGD and FedPD-GD) and Oracle II (FedPD-VR). For FedPD-SGD,
we set Q = 600, and for FedPD-GD and FedPD-VR we set Q = 8. For FedPD-GD we set p = 0 and p = 0.5,
wherein the later case the agents skips half of the communication rounds. For FedPD-VR, we set mini-batch
size B = 1 and gradient computation frequency I = 20. For comparison, we also run FedAvg with local
GD/SGD and FedProx. For FedAvg with GD, Q = 8, and for FedAvg with SGD, Q = 600. For FedProx,
we solve the local problem using variance reduction for Q = 8 iterations. The total number of iterations T
is set as 600 for all algorithms.

Fig. 2 shows the results with respect to the number of communication rounds. In Fig. 2(a), we compare
the convergence of the tested algorithms on weakly non-i.i.d. data set. It is clear that FedProx and FedPD
with p = 0 (i.e., no communication skipping) are comparable. Meanwhile, FedAvg with local GD will not
converge to the stationary point with a constant stepsize when local update step Q > 1. By skipping half
of the communication, FedPD with local GD can still achieve a similar error as FedAvg, but using fewer
communication rounds. In Fig. 2(b), we compare the convergence results of different algorithms with the
strongly non-i.i.d. data set. We can see that the algorithms using stochastic solvers become less stable
compared with the case when the data sets are weakly non-i.i.d. Further, FedPD-VR and FedPD-GD with
p = 0 are able still to converge to the global stationary point while FedProx will achieve a similar error as
the FedAvg with local GD.

We included more details on the experimental results and additional experiments in Appendix H.
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5 Conclusion

We study federated learning under the CTA protocol. We explore a number of theoretical properties of
this protocol, and design a meta-algorithm called FedPD, which contains various algorithms with desirable
properties, such achieving the best communication/computation complexity, as being able to adapt its
communication pattern with data heterogeneity.
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A Examples of Cost Functions Satisfy A5

In this part, we provide a commonly used function that satisfies A5.
Logistic Regression
Consider the case where the kth sample ξi,k in data set Di consist of a feature vector ak and a scalar

label bk. The feature vector ak has the same length as x and bk is a scalar in R. Then the loss function of
a logistic regression problem is expressed as

fi(x) =
1

|Di|
∑

(ak,bk)∈Di

1

1 + exp(bk − aTk x)
. (15)

The gradient of this loss function is

∇fi(x) =
1

|Di|
∑

(ak,bk)∈Di

ak exp(bk − aTk x)

(1 + exp(bk − aTk x))2
. (16)

Define the scalar
exp(bk−aT

k x)

(1+exp(bk−aT
k x))2

as v(ak, bk,x), we have v(ak, bk,x) ∈ (0, 1), ∀x,ak, bk. Further stack

v(ak, bk,x) as v(Di,x), that is v(Di,x) = [v(a1, b1,x); . . . , ; v(a|Di|, b|Di|,x)]. Further we define Ai as the
stacked matrix of all ak ∈ Di (i.e., Ai = [a1, . . . ,a|Di|]), then we can express ∇fi(x) as

∇fi(x) =
1

|Di|
Aiv(Di,x). (17)

The difference between the gradients of fi and fj is

‖∇fi(x)−∇fj(x)‖ =

∥∥∥∥ 1

|Di|
Aiv(Di,x)− 1

|Dj |
Ajv(Dj ,x)

∥∥∥∥
≤ 1

|Di|
‖Aiv(Di,x)‖+

1

|Dj |
‖Ajv(Dj ,x)‖ .

(18)

As v(a, b,x) ∈ (0, 1), we know ‖v(Di,x)‖ ≤ ‖[1, . . . , 1]‖ =
√
|Di|, which implies:

‖Ai‖ ≥
‖Aiv(Di,x)‖
‖v(Di,x)‖

≥ ‖Aiv(Di,x)‖√
|Di|

.

Utilizing the above inequality in (18), we obtain:

‖∇fi(x)−∇fj(x)‖ ≤ 1

|Di|
‖Aiv(Di,x)‖+

1

|Dj |
‖Ajv(Dj ,x)‖

≤ 1√
|Di|
‖Ai‖+

1√
|Dj |

‖Aj‖ .
(19)

So we can define δ = maxi,j

{
1√
|Di|
‖Ai‖+ 1√

|Dj |
‖Aj‖

}
which is a finite constant. Note that the above

analysis holds true for any Di and x. Note that with finer analysis we can obtain better bounds for δ.
Hyperbolic Tangent
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Similar to logistic regression, we can also show that A5 holds for hyperbolic tangent function which is
commonly used in neural network models. First, notice that the hyperbolic tangent is a rescaled version
of logistic regression:

tanh(bk − aTk x) =
exp(bk − aTk x)− exp(aTk x− bk)
exp(bk − aTk x) + exp(aTk x− bk)

=
2

1 + exp(2(bk − aTk x))
− 1,

Therefore we have

∇x tanh(bk − aTk x) = 4∇x
1

1 + exp(2(bk − aTk x))
.

So, δ for tanh is 4 times that applicable to the logistic regression problem. Note that this analysis can
further cover a wide range of neural network training problems that uses cross entropy loss and sigmoidal
activation functions (e.g. MLP, CNN and RNN).

Special Case in Linear Regression
Consider the linear regression problem

fi(x) =
1

2
‖Aix + bi‖2 , i = 1, . . . , N.

We have

∇fi(x) = ATi Aix +ATi bi.

Then if the feature Ai’s satisfy ATi Ai = ATj Aj , ∀ i 6= j, we have

δ = max
i,j

∣∣ATi bi −ATj bj∣∣ .
B Proof of Claim 2.1

The proof is related to techniques developed in classical and recent works that characterize lower bounds for
first-order methods in centralized [20, 21] and decentralized [22, 23] settings. Technically, our computational
/ communication model is different compared to the aforementioned works, since we allow arbitrary number
of local processing iterations, and we have a central aggregator. The difference here is that our goal is
not to show the lower bounds on the number of total (centralized) gradient access, nor to show the
optimal graph dependency. The main point we would like to make is that there exist constructions of local
functions fi’s such that no matter how many times that local first-order processing is performed, without
communication and aggregation, no significant progress can be made in reducing the stationarity gap of
the original problem.

For notational simplicity, we will assume that the full local gradients {∇fi(xki )} can be evaluated.
Later we will comment on how to extend this result to enable access to the sample gradients ∇F (xki ; ξi).
In particular, we consider the following slightly simplified model for now:

xt = V t({xt−1,Q
i }Ni=1), xt,0i = xt, ∀ i ∈ [N ], (20a)

xt,qi ∈W
t
i

(
{xr,ki ,

{
∇fi(xr,ki )}

}k=0:q−1

r=0:t

)
, q ∈ [Q], ∀ i. (20b)
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B.1 Notation.

In this section, we will call each t a “stage,” and call each local iteration q an “iteration.” We use x to
denote the variable located at the server. We use xi (and sometimes xq) to denote the local variable at
node i, and use xi[j] and xi[k] to denote its jth and kth elements, respectively. We use gi(·) and fi(·) to
denote some functions related to node i, and g(·) and f(·) to denote the average functions of gi’s and fi’s,
respectively. We use N to denote the total number of nodes.

B.2 Main Constructions.

Suppose there are N distributed nodes in the system, and they can all communicate with the server. To
begin, we construct the following two non-convex functions

g(x) :=
1

N

N∑
i=1

gi(x), f(x) :=
1

N

N∑
i=1

fi(x). (21)

Here we have x ∈ RT+1. We assume N is constant, and T is the total number of stages (a large number
and one that can potentially increase). For notational simplicity, and without loss of generality, we assume
that T ≥ N , and it is divisible by N . Let us define the component functions gi’s in (21) as follows.

gi(x) = Θ(x, 1) +

T/N∑
j=1

Θ(x, (j − 1)N + i+ 1), (22)

where we have defined the following functions

Θ(x, j) := Ψ(−x[j − 1])Φ(−x[j])−Ψ(x[j − 1])Φ(x[j]), ∀ j = 2, · · · , T + 1,

Θ(x, 1) := −Ψ(1)Φ(x[1]). (23a)

Clearly, each Θ(x, j) is only related to two components in x, i.e., x[j − 1] and x[j].
The component functions Ψ,Φ : R→ R are given as below

Ψ(w) :=

{
0 w ≤ 0

1− e−w2
w > 0,

Φ(w) := 4 arctanw + 2π.

By the above definition, the average function becomes:

g(x) :=
1

M

M∑
j=1

gi(x) = Θ(x, 1) +
T+1∑
j=2

Θ(x, j) (24)

= −Ψ(1)Φ (x[1]) +
T+1∑
j=2

[Ψ (−x[j − 1]) Φ (−x[j])−Ψ (x[j − 1]) Φ (x[j])] .

See Fig. 3 for an illustration of the construction discussed above.
Further, for a given error constant ε > 0 and a given the Lipschitz constant L, let us define

fi(x) :=
2πε

L
gi

(
xL

π
√

2ε

)
. (25)
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Figure 3: The example constructed for proving Claim 2.1. Here each agent has a local length T + 1 vector xi; each
block in the figure represents one dimension of the local vector. If for agent i, its jth block is white it means that fi
is not a function of xi[j], while if jth block is shaded means fi is a function of xi[j]. Each dashed red box contains
two variables that are coupled together by a function Θ(·).

Therefore, we also have

f(x) :=
1

N

N∑
i=1

fi(x) =
2πε

L
g

(
xL

π
√

2ε

)
. (26)

B.3 Properties.

First we present some properties of the component functions hi’s.

Lemma 1. The functions Ψ and Φ satisfy the following:

1. For all w ≤ 0, Ψ(w) = 0, Ψ′(w) = 0.

2. The following bounds hold for the functions and their first- and second-order derivatives:

0 ≤ Ψ(w) < 1, 0 ≤ Ψ′(w) ≤
√

2

e
,

− 4

e
3
2

≤ Ψ′′(w) ≤ 2, ∀w > 0.
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0 < Φ(w) < 4π, 0 < Φ′(w) ≤ 4,

−3
√

3

2
≤ Φ′′(w) ≤ 3

√
3

2
, ∀w ∈ R.

3. The following key property holds:

Ψ(w)Φ′(v) > 1, ∀ w ≥ 1, |v| < 1. (27)

4. The function h is lower bounded as follows:

gi(0)− inf
x
gi(x) ≤ 5πT/N,

g(0)− inf
x
g(x) ≤ 5πT/N.

5. The first-order derivative of g (respectively, gi) is Lipschitz continuous with constant ` = 27π
(respectively, `i = 27π, ∀ i).

Proof. Property 1) is easy to check.
To prove Property 2), note that following holds for w > 0:

Ψ(w) = 1− e−w2
, Ψ′(w) = 2e−w

2
w, Ψ′′(w) = 2e−w

2 − 4e−w
2
w2, ∀ w > 0. (28)

Obviously, Ψ(w) is an increasing function over w > 0, therefore the lower and upper bounds are Ψ(0) =
0,Ψ(∞) = 1; Ψ′(w) is increasing on [0, 1√

2
] and decreasing on [ 1√

2
,∞], where Ψ′′( 1√

2
) = 0, therefore the

lower and upper bounds are Ψ′(0) = Ψ′(∞) = 0,Ψ′( 1√
2
) =

√
2
e ; Ψ′′(w) is decreasing on (0,

√
3
2 ] and

increasing on [
√

3
2 ,∞) (this can be verified by checking the signs of Ψ′′′(w) = 4e−w

2
w(2w2 − 3) in these

intervals). Therefore the lower and upper bounds are Ψ′′(
√

3
2) = − 4

e
3
2
,Ψ′′(0+) = 2, i.e.,

0 ≤ Ψ(w) < 1, 0 ≤ Ψ′(w) ≤
√

2

e
, − 4

e
3
2

≤ Ψ′′(w) ≤ 2, ∀w > 0.

Further, for all w ∈ R, the following holds:

Φ(w) = 4 arctanw + 2π, Φ′(w) =
4

w2 + 1
, Φ′′(w) = − 8w

(w2 + 1)2
. (29)

Similarly, as above, we can obtain the following bounds:

0 < Φ(w) < 4π, 0 < Φ′(w) ≤ 4, − 3
√

3

2
≤ Φ′′(w) ≤ 3

√
3

2
, ∀w ∈ R.

To show Property 3), note that for all w ≥ 1 and |v| < 1,

Ψ(w)Φ′(v) > Ψ(1)Φ′(1) = 2(1− e−1) > 1

where the first inequality is true because Ψ(w) is strictly increasing and Φ′(v) is strictly decreasing for all
w > 0 and v > 0, and that Φ′(v) = Φ′(|v|).
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Next we show Property 4). Note that 0 ≤ Ψ(w) < 1 and 0 < Φ(w) < 4π. Therefore we have
g(0) = −Ψ(1)Φ(0) < 0 and using the construction in (22)

inf
x
gi(x) ≥ −Ψ(1)Φ(x[1])−

T/N∑
j=1

sup
w,v

Ψ(w)Φ(v) (30)

≥ −4π − 4(T/N)π ≥ −5πT/N, (31)

where the first inequality follows from Ψ(w)Φ(v) > 0, the second follows from Ψ(w)Φ(v) < 4π, and the
last is true because T/N ≥ 1.

Finally, we show Property 5), using the fact that a function is Lipschitz if it is piecewise smooth with
bounded derivative. Before proceeding, let us note a few properties of the construction in (24) (also see
Fig. 3). First, for a given node q, its local function hq is only related to the following x[j]’s

j = 1 + q + `×N ≥ 1, ` = 0, · · · , (N − 1),

j = q + `×N ≥ 1, ` = 0, · · · , (N − 1),

or equivalently

q = j − 1− `×N ≥ 1, ` = 0, · · · , (N − 1),

q = j − `×N ≥ 1, ` = 0, · · · , (N − 1).

Then the first-order partial derivative of gq(y) can be expressed below.
Case I) If j 6= 1 we have

∂gq
∂x[j]

=



(−Ψ (−x[j − 1]) Φ′ (−x[j])−Ψ (x[j − 1]) Φ′ (x[j])) ,

q = j − 1−N(`) ≥ 1, ` = 0, · · · , TN − 1, j = 2, 3, · · · , T + 1
(−Ψ′ (−x[j]) Φ (−x[j + 1])−Ψ′ (x[j]) Φ (x[j + 1])) ,

q = j −N(`) ≥ 1, ` = 0, · · · , TN − 1, j = 3, 4, · · ·T
0

otherwise.

. (32)

Case II) If j = 1, we have

∂gq
∂x[1]

=

{
−Ψ(1)Φ′(x[1]) + (−Ψ′ (−x[1]) Φ (−x[2])−Ψ′ (x[1]) Φ (x[2])) , q = 1
−Ψ(1)Φ′(x[1]), q 6= 1

. (33)

From the above derivation, it is clear that for any j, q,
∂gq
∂x[j] is either zero or is a piecewise smooth

function separated at the non-differentiable point x[j] = 0, because the function Ψ′(·) is not differentiable
at 0.

Further, fix a point x ∈ RT+1 and a unit vector v ∈ RT+1 where
∑T+1

j=1 v[j]2 = 1. Define

`q(θ;x, v) := gq(x+ θv)

to be the directional projection of gq on to the direction v at point x. We will show that there exists C > 0
such that |`q ′′(0;x, v)| ≤ C for all x 6= 0 (where the second-order derivative is taken with respect to θ).
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First, by noting the fact that each if x[j] appears in gq(x), then it must also be coupled with either x[j+1]

or x[j−1], but not other x[k]’s for k 6= j−1, j+1. This means that
∂2gq(x)

∂x[j1]∂x[j2] = 0, ∀ j2 6= {j1, j1 +1, j1−1}.
Using this fact, we can compute `q

′′(0;x, v) as follows:

`
′′
q (0;x, v) =

T∑
j1,j2=1

∂2gq (x)

∂x[j1]∂x[j2]
v[j1]v[i2]

=
∑

δ∈{0,1,−1}

T∑
j=1

∂2gq (x)

∂x[j]∂x[j + δ]
v[j]v[j + δ],

where we take v[0] := 0 and v[T + 1] := 0.
By using (32) and the above facts, the second-order partial derivative of gq(x) (∀x 6= 0) is given as

follows when j 6= 1:

∂2gq
∂x[j]∂x[j]

=



(Ψ (−x[j − 1]) Φ′′ (−x[j])−Ψ (x[j − 1]) Φ′′ (x[j])) ,

q = j − 1−N(`) ≥ 1, ` = 0, · · · , TN − 1, j = 2, 3, · · · , T + 1
(Ψ′′ (−x[j]) Φ (−x[j + 1])−Ψ′′ (x[j]) Φ (x[j + 1])) ,

q = j −N(`) ≥ 1, ` = 0, · · · , TN − 1, j = 3, 4, · · · , T
0,

otherwise
(34)

∂2gq
∂x[j]∂x[j + 1]

=


(Ψ′ (−x[j]) Φ′ (−x[j + 1])−Ψ′ (x[j]) Φ′ (x[j + 1])) ,

q = j −N(`) ≥ 1, ` = 0, · · · , TN − 1, j = 3, 4, · · · , T
0,

otherwise

(35)

∂2gq
∂x[j]∂x[j − 1]

=


(Ψ′ (−x[j − 1]) Φ′ (−x[j])−Ψ′ (x[j − 1]) Φ′ (x[j])) ,

q = j −N(`) ≥ 1, ` = 0, · · · , TN − 1, j = 2, 3, · · · , T + 1
0,

otherwise

.

(36)

By applying Lemma 1 – i) [i.e., Ψ(w) = Ψ′(w) = Ψ′′(w) = 0 for ∀ w ≤ 0], we can obtain that at least one
of the terms Ψ (−x[j − 1]) Φ′′ (−x[j]) or −Ψ (x[j − 1]) Φ′′ (x[j]) is zero. It follows that

Ψ (−x[j − 1]) Φ′′ (−x[j])−Ψ (x[j − 1]) Φ′′ (x[j]) ≤ sup
w
|Ψ(w)| sup

v
|Φ′′(v)|.

Taking the maximum over equations (34) to (36) and plug in the above inequalities, we obtain∣∣∣∣ ∂2gq
∂x[j1]∂x[j2]

∣∣∣∣ ≤ max{sup
w
|Ψ′′(w)| sup

v
|Φ(v)|, sup

w
|Ψ(w)| sup

v
|Φ′′(v)|, sup

w
|Ψ′(w)| sup

v
|Φ′(v)|}

= max

{
8π,

3
√

3

2
, 4

√
2

e

}
< 8π, ∀ j1 6= 1,
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where the equality comes from Lemma 1 – ii).
When j = 1, by using (33), we have the following:

∂2gq(x)

∂x[1]∂x[1]
=

{
−Ψ(1)Φ′′(x[1]) + (−Ψ′′ (−x[1]) Φ (−x[2])−Ψ′′ (x[1]) Φ (x[2])) , q = 1
−Ψ(1)Φ′′(x[1]), otherwise

,

∂2gq(x)

∂x[1]∂x[2]
=

{
(−Ψ′ (−x[1]) Φ′ (−x[2])−Ψ′ (x[1]) Φ′ (x[2])) , q = 1
0, otherwise

.

Again by applying Lemma 1 – i) and ii),∣∣∣∣ ∂2gq(x)

∂x[1]∂x[j2]

∣∣∣∣ ≤ max{sup
w
|Ψ(1)Φ′′(w)|+ sup

w
|Ψ′′(w)| sup

v
|Φ(v)|, sup

w
|Ψ′(w)| sup

v
|Φ′(v)|}

= max

{
3
√

3

2
(1− e−1) + 8π, 4

√
2

e

}
< 9π, ∀ j2.

Summarizing the above results, we obtain:

|`′′q (0;x, v) | = |
∑

δ∈{0,1,−1}

T∑
j=1

∂2gq (y)

∂x[j]∂x[j + δ]
v[j]v[j + δ]|

≤ 9π
∑

δ∈{0,1,−1}

|
T∑
j=1

v[j]v[j + δ]|

≤ 9π

| T∑
j=1

v[j]2|+ 2|
T∑
j=1

v[j]v[j + 1]|


≤ 27π

T∑
j=1

|v[j]2| = 27π.

Overall, the first-order derivatives of hq are Lipsschitz continuous for any q with constant at most ` = 27π.
�

The following lemma is a simple extension of the previous result.

Lemma 2. We have the following properties for the functions f defined in (26) and (25):

1. We have ∀ x ∈ RT+1

f(0)− inf
x
f(x) ≤ 10π2ε

LN
T.

2. We have

‖∇f(x)‖ =
√

2ε

∥∥∥∥∇g( xL

π
√

2ε

)∥∥∥∥ , ∀ x ∈ RT+1. (37)

3. The first-order derivatives of f and that for each fi, i ∈ [N ] are Lipschitz continuous, with the same
constant U > 0.
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Proof. To show that property 1) is true, note that we have the following:

f(0)− inf
x
f(x) =

2πε

L

(
g(0)− inf

x
g(x)

)
.

Then by applying Lemma 1 we have that for any T ≥ 1, the following holds

f(0)− inf
x
f(x) ≤ 2πε

L
× 5πT

N
.

Property 2) is true is due to the definition of fi, so that we have:

∇fi(x) =
√

2ε×∇gi
(

xL

π
√

2ε

)
.

Property 3) is true because the following:

‖∇f(z)−∇f(y)‖ =
√

2ε

∥∥∥∥∇g( zU

π
√

2ε

)
−∇g

(
yU

π
√

2ε

)∥∥∥∥ ≤ U‖z − y‖
where the last inequality comes from Lemma 1 – (5). This completes the proof. �

Next let us analyze the size of ∇g. We have the following result.

Lemma 3. If there exists k ∈ [T ] such that |x[k]| < 1, then

‖∇g(x)‖ =

∥∥∥∥∥ 1

N

N∑
i=1

∇gi(x)

∥∥∥∥∥ ≥
∣∣∣∣∣ 1

N

N∑
i=1

∂gi(x)

∂x[k]

∣∣∣∣∣ > 1/N.

Proof. The first inequality holds for all k ∈ [T ], since 1
N

∑N
i=1

∂
∂y[k]gi(x) is one element of 1

N

∑N
i=1∇gi(x).

We divide the proof for the second inequality into two cases.
Case 1. Suppose |x[j − 1]| < 1 for all 2 ≤ j ≤ k. Therefore, we have |x[1]| < 1. Using (33), we have the
following inequalities:

∂gi(x)

∂x[1]

(i)

≤ −Ψ(1)Φ′(x[1])
(ii)
< −1,∀i (38)

where (i) is true because Ψ′(w),Φ(w) are all non-negative from Lemma 1 -(2); (ii) is true due to Lemma
1 – (3). Therefore, we have the following∥∥∥∥∥ 1

N

N∑
i=1

∇gi(x)

∥∥∥∥∥ ≥
∣∣∣∣∣ 1

N

N∑
i=1

∂

∂x[1]
gi(x)

∣∣∣∣∣ > 1.

Case 2) Suppose there exists 2 ≤ j ≤ k such that |x[j − 1]| ≥ 1.
We choose j so that |x[j − 1]| ≥ 1 and |x[j]| < 1. Therefore, depending on the choices of (i, j) we have

three cases:

∂gi(x)

∂x[j]
=



(−Ψ (−x[j − 1]) Φ′ (−x[j])−Ψ (x[j − 1]) Φ′ (x[j])) ,

i = j − 1−N(`) ≥ 1, ` = 0, · · · , TN − 1, j = 2, 3, · · · , T + 1
(−Ψ′ (−x[j]) Φ (−x[j + 1])−Ψ′ (x[j]) Φ (x[j + 1])) ,

i = j − 1−N(`) ≥ 1, ` = 0, · · · , TN − 1, j = 3, 4, · · · , T
0

otherwise

. (39)
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First, note that ∂gi(x)
∂x[j] ≤ 0, for all i, j, by checking the definitions of Ψ(·),Φ′(·),Ψ′(·),Φ(·).

Then for (i, j) satisfying the first condition, because |x[j− 1]| ≥ 1 and |x[j]| < 1, using Lemma 1 – (3),
and the fact that the negative part is zero for Ψ, and Φ′ is even function, the expression further simplifies
to:

−Ψ(|x[j − 1]|)Φ′ (|x[j]|)]
(27)
< −1. (40)

If the second condition holds true, the expression is obviously non-positive because both Ψ′ and Φ are
non-negative. Overall, we have ∣∣∣∣∣ 1

N

N∑
i=1

∂gi(x)

∂x[j]

∣∣∣∣∣ > 1

N
.

This completes the proof. �

Lemma 4. Consider using an algorithm of the form (20) to solve the following problem:

min
x∈RT+1

g(x) =
1

N

N∑
i=1

gi(x). (41)

Assume the initial solution: xi = 0, ∀ i ∈ [N ]. Let x̄ = 1
N

∑N
i=1 αixi denote some linear combination of

local variables, where {αi > 0} are the coefficients (possibly time-varying and dependent on t). Then no
matter how many local computation steps (20b) are performed, at least T communication steps (20a) are
needed to ensure x̄[T ] 6= 0.

Proof. For a given j ≥ 2, suppose that xi[j], xi[j + 1], ..., xi[T ] = 0, ∀i, that is, support{xi} ⊆
{1, 2, 3, ..., j − 1} for all i. Then Ψ′ (xi[j]) = Ψ′ (−xi[j]) = 0 for all i, and gi has the following partial
derivative (see (32))

∂gi(xi)

∂xi[j]
= −

(
Ψ (−xi[j − 1]) Φ′ (−xi[j])

)
+
(
Ψ (xi[j − 1]) Φ′ (xi[j])

)
, (42)

i = j − 1−N(`) ≥ 1, ` = 0, · · · , T
N
− 1, j = 2, 3, · · · , T + 1. (43)

Clearly, if xi[j − 1] = 0, then by the definition of Ψ(·), the above partial gradient is also zero. In other
words, the above partial gradient is only non-zero if xi[j − 1] 6= 0.

Recall that we have assumed that the server aggregation is performed using a linear combination
x̄ = 1

N

∑N
i=1 αixi, with the coefficients αi’s possibly depending on the stage t (but such a dependency will

be irrelevant for our purpose, as will be see shortly). Therefore, at a given stage t, for a given node i, when
j ≥ 3, its jth element will become nonzero only if one of the following two cases hold true:

• If before the aggregation step (i.e., at stage t− 1), some other node q has xq[j] being nonzero.

• If ∂gi(xi)
∂xi[j]

is nonzero at stage t.

Now suppose that the initial solution is xi[j] = 0 for all (i, j). Then at the first iteration only ∂gi(xi)
∂xi[1]

is non-zero for all i, due to the fact that ∂gi(xi)
∂xi[1] = Ψ(1)Φ′(0) = 4(1 − e−1) for all i from (33). It is also

important to observe that, if all nodes i 6= 1 were to perform subsequent local updates (20b), the local
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variable xj will have the same support (i.e., only the first element is non-zero). To see this, suppose k = 2,
then for i = 2, we have

∂gi(xi)

∂xi[2]
=
(
−Ψ′ (−x[2]) Φ (−x[3])−Ψ′ (x[2]) Φ (x[3])

)
= 0, (44)

since x[2] = 0 implies Ψ′ (−x[2]) = 0. Similarly reasoning applies when i = 2, k ≥ 3.
If i ≥ 3, then these local functions are not related to xi[2], so the partial derivative is also zero.
Now let us look at node i = 1. For this node, according to (42), we have

∂g1(x1)

∂x1[2]
= −

(
Ψ (−x1[1]) Φ′ (−x1[2])

)
+
(
Ψ (x1[1]) Φ′ (x1[2])

)
. (45)

Since x1[1] can be non-zero, then this partial gradient can also be non-zero. Further, with a similar
argument as above, we can also confirm that no matter how many local computation steps that node 1
performs, only the first two elements of x1 can be non-zero.

So for the first stage t = 1, we conclude that, no matter how many local computation that the nodes
perform (in the form of the computation step given in (20b)), only x1 can have two non-zero entries, while
the rest of the local variables only have one non-zero entries.

Then suppose that the communication and aggregation step is performed once. It follows that after
broadcasting x̄ = 1

N

∑N
i=1 αixi to all the nodes, everyone can have two non-zero entries. Then the nodes

proceed with local computation, and by the same argument as above, one can show that this time only
x2 can have three non-zero entries. Following the above procedure, it is clear that each aggregation step
can advance the non-zero entry of x̄ by one, while performing multiple local updates does not advance
the non-zero entry. Then we conclude that we need at least T communication steps, and local gradient
computation steps, to make xi[T ] possibly non-zero. �

B.4 Main Result for Claim 2.1.

Below we state and prove a formal version of Claim 2.1 given in the main text.

Theorem 2. Let ε be a positive number. Let x0
i [j] = 0 for all i ∈ [N ], and all j = 1, · · · , T + 1. Consider

any algorithm obeying the rules given in (10), where the V t(·) and W t
i (·)’s are linear operators. Then

regardless of the number of local updates there exists a problem satisfying Assumption 1 – 2, such that it
requires at least the following number of stages t (and equivalently, aggregation and communications rounds
in (20a))

t ≥ (f(0)− infx f(x))LN

10π2
ε−1 (46)

to achieve the following error

h∗t =

∥∥∥∥ 1

N

N∑
i=1

∇fi(xt)
∥∥∥∥2

< ε. (47)

Proof of Claim 2.1. First, let us show that the algorithm obeying the rules given in (20) has the
desired property. Note that the difference between two rules is whether the sampled local gradients are
used for the update, or the full local gradients are used.
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By Lemma 4 we have x̄[T ] = 0 for all t < T . Then by applying Lemma 2 – (2) and Lemma 3, we can
conclude that the following holds

‖∇f(x̄[T ])‖ =
√

2ε

∥∥∥∥∇h( x̄[T ]U

π
√

2ε

)∥∥∥∥ > √2ε/N, (48)

where the second inequality follows that there exists k ∈ [T ] such that | x̄[k]U

π
√

2ε
| = 0 < 1, then we can directly

apply Lemma 3.
The third part of Lemma 2 ensures that fi’s are L-Lipschitz continuous gradient, and the first part

shows

f(0)− inf
x
f(x) ≤ 10π2ε

LN
T,

Therefore we obtain

T ≥ (f(0)− infx f(x))LN

10π2
ε−1. (49)

This completes the proof.
Second, consider the algorithm obeying the rules give in (10), in which local sampled gradients are used.

By careful inspection, the result for this case can be trivially extended from the previous case. We only
need to consider the following local functions

f̂i(x) =
∑
ξi∈Di

F (x; ξi) (50)

where each sampled loss function F (x; ξi) is defined as

F (x; ξi) = δ(ξi)fi(x), where fi(x) is defined in (25). (51)

where δ(ξi)’s satisfy δ(ξi) > 0 and
∑

ξi∈Di
δ(ξi) = 1. It is easy to see that, the local sampled gradients

have the same dependency on x as their averaged version (by dependency we meant the structure that is
depicted in Fig. 3). Therefore, the progression of the non-zero pattern of the average x̄ = 1

N

∑N
i=1 xi is

exactly the same as the batch gradient version. Additionally, since the local function f̂(x) is exactly the
same as the previous local function f(x), so other estimates, such as the one that bounds f(0)− inf f(x),
also remain the same.

C Proof of Claim 2.2

First let us consider FedAvg with local-GD update (9). We consider the following problem with N = 2,
which satisfies both Assumptions 1 and 2, with f(x) = 0, ∀ x

f1(x) =
1

2
x2, f2(x) = −1

2
x2. (52)

Each local iteration of the FedAvg is given by

xr+1
1 = (1− ηr+1)xr1, xr+1

2 = (1 + ηr+1)xr2. (53)
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For simplicity, let us define y = [x1,x2]T , and define the matrix D = [1 − η, 0; 0, 1 + η]. Then running
Q rounds of the FedAvg algorithm starting with r = kQ for some non-negative integer k ≥ 0, can be
expressed as

y(k+1)Q = DQ−1ykQ+1, ykQ+1 =
1

2
11TDykQ. (54)

Therefore overall we have

y(k+1)Q =
1

2
DQ−111TDykQ. (55)

It is easy to show that for anyQ > 1, the eigenvalues of the matrix 1
2D

Q−111TD are 0 and (1+η)Q+(1−η)Q

2 >
1.

It follows that the above iteration will diverge for any Q > 1 starting from any non-zero initial point.
Moreover, when the sample on one agent are the same (e.g., agent 1 has two samples that both has

loss function x2), then using SGD as local update will be identical to the update of GD.

D Results showing the role of GB for FedAvg with diminishing stepsizes

This section is used to show the role of A3 in FedAvg. First we prove that with A3, FedAvg can use
arbitrary stepsize as long as it diminishes to zero. Next, we show by a simple example that without A3,
FedAvg will diverge with the same diminishing stepsize choice.

Claim D.1. Suppose A1–A3 hold and the stepsizes satisfy: 1) ηr,0 = η ∈ (0, 1/L) for all r; 2) set
0 < ηr,q ≤ min{ 1

2(Q−1)L ,
η
Q}, limr→∞ η

r,q = 0, q 6= 0. Then the average gradient converges to zero for

FedAvg with local-GD update (9):

1

T

T∑
r=0

‖∇f(xr)‖2 ≤ 2(f(x0)− f(x?))

C1T
+

2QG2η2

C1T

T∑
r=0

Q−1∑
q=1

ηr,q, for some C1 := η(1− Lη).

Claim D.2. Suppose that all the assumptions made in Claim D.1 hold, except that A3 does not hold. Then
FedAvg with local-GD can diverge for any Q > 1.

Before we prove Claim D.1, the following lemma is needed.

Lemma 5. Under A1 and A3, following the update steps in Algorithm 1, between each outer iterations we
have:

f(xr+1)− f(xr) ≤− (ηr,0(1− Lηr,0) +

Q−1∑
q=1

ηr,q

2
) ‖∇f(xr)‖2

−
Q−1∑
q=1

(
ηr,q

2
− 2L(Q− 1)(ηr,q)2)

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xr,qi )

∥∥∥∥∥
2

+
QG2

2
((ηr,0)2 +

Q−1∑
q=1

(ηr,q)2)

Q−1∑
q=1

ηr,q,

(56)

where r0 + 1 mod Q = 0.
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Proof: By using A1 we have:

f(xr+1)− f(xr)

≤
〈
∇f(xr),xr+1 − xr

〉
+
L

2

∥∥xr+1 − xr
∥∥2

(a)
= −

〈
∇f(xr),

1

N

N∑
i=1

Q−1∑
q=0

ηr,q∇fi(xr,qi )

〉
+
L

2

∥∥∥∥∥ 1

N

N∑
i=1

Q−1∑
q=0

ηr,q∇fi(xr,qi )

∥∥∥∥∥
2

(b)

≤ −
Q−1∑
q=1

ηr,q

〈
∇f(xr),

1

N

N∑
i=1

∇fi(xr,qi )

〉
+ L(ηr,0)2 ‖∇f(xr)‖2

+ (Q− 1)L

Q−1∑
q=1

(ηr,q)2

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xr,qi )

∥∥∥∥∥
2

(c)
= −ηr,0 ‖∇f(xr)‖2 −

Q−1∑
q=1

ηr,q

〈
∇f(xr),

1

N

N∑
i=1

∇fi(xr,qi )

〉

+ L(ηr,0)2 ‖∇f(xr)‖2 + (Q− 1)L

Q−1∑
q=1

(ηr,q)2

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xr,qi )

∥∥∥∥∥
2

,

(57)

where (a) comes from the update rule in Algorithm 1, in (b) we use Jensen’s inequality and notice xr,0i = xr

so in (c) we extract the terms with index (r, 0) from the inner product.
Note that for any vector a, b of the same length, the equality 2 〈a, b〉 = ‖a‖2 + ‖b‖2 − ‖a− b‖2 , holds,

we have

− ηr,q
〈
∇f(xr),

1

N

N∑
i=1

∇fi(xr,qi )

〉
+ (Q− 1)L(ηr,q)2

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xr,qi )

∥∥∥∥∥
2

= −η
r,q

2
‖∇f(xr)‖2 − ηr,q

2

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xr,qi )

∥∥∥∥∥
2

+
ηr,q

2

∥∥∥∥∥∇f(xr)− 1

N

N∑
i=1

∇fi(xr,qi )

∥∥∥∥∥
2

+ (Q− 1)L(ηr,q)2

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xr,qi )

∥∥∥∥∥
2

(a)

≤ −η
r,q

2
‖∇f(xr)‖2 +

ηr,q

2N

N∑
i=1

‖∇fi(xr)−∇fi(xr,qi )‖2

− ηr,q

2
((1− 2(Q− 1)Lηr,q))

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xr,qi )

∥∥∥∥∥
2

(b)

≤ −η
r,q

2
‖∇f(xr)‖2 +

L2ηr,q

2N

N∑
i=1

‖xr − xr,qi ‖
2 − ηr,q

2
((1− 2(Q− 1)Lηr,q))

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xr,qi )

∥∥∥∥∥
2

,

(58)

where we use Jensen’s inequality in (a) and A1 in (b).
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Further note that

‖xr − xr,qi ‖
2

=

∥∥∥∥∥xr − xr +

q−1∑
τ=0

ηr,τ∇fi(xr,τi )

∥∥∥∥∥
2

=

∥∥∥∥∥
q−1∑
τ=0

ηr,τ∇fi(xr,τi )

∥∥∥∥∥
2

(a)

≤ 2(q − 1)

q−1∑
τ=1

(ηr,τ )2 ‖∇fi(xr,τi )‖2 + 2(ηr,0)2
∥∥∥∇fi(xr,0i )

∥∥∥2

(b)

≤ 2

(
(q − 1)

q−1∑
τ=1

(ηr,τ )2 + (ηr,0)2

)
G2.

(59)

The first equality comes from the update rule of xr,qi , which basically performs q steps of updates on xr;
(a) comes from Jensen’s inequality; in (b) we use A3.

Substitute (59) to (58) and then to (57), rearrange the terms we obtain (56), which ends the proof of
the lemma. �

D.1 Proof of Claim D.1

Next we prove Claim D.1
Proof: By choosing ηr,0 = η1 =∈ (0, 1/L) as constant and ηr,q ≤ 1/(2QL) , ∀ q 6= 0 then applying

Lemma 5 we have

f(xr+1)− f(xr) ≤ −(C1 +

Q−1∑
q=1

ηr,q

2
) ‖∇f(xr)‖2

+
QG2

2
((η1)2 +

Q−1∑
q=1

(ηr,q)2)

Q−1∑
q=1

ηr,q,

(60)

where C1 = η1(1− Lη1) > 0. Using telescope sum from r = 0 to r = T − 1 we have

f(xT )− f(x0) ≤ −
T−1∑
r=0

(C1 +

Q−1∑
q=1

ηr,q

2
) ‖∇f(xr)‖2

+
QG2

2

T−1∑
r=0

((η1)2 +

Q−1∑
q=1

(ηr,q)2)

Q−1∑
q=1

ηr,q.

(61)

Rearrange the terms and multiply both side by 2/(TC1), then we have

(
1

T
+

∑T−1
r=0

∑Q−1
q=1 η

r,q

TC1
)

T∑
r=0

‖∇f(xr)‖2 ≤ 2(f(x0)− f(x?))

C1T

+
QG2

C1T

T−1∑
r=0

((η1)2 +

Q−1∑
q=1

(ηr,q)2)

Q−1∑
q=1

ηr,q.

(62)
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Choose ηr,q ≤ η1/Q, then (η1)2 +
∑Q−1

q=1 (ηr,q)2 ≤ 2(η1)2. Choose {ηr,q} as a sequence that diminishes to 0,

then for all q 6= 0, as T → ∞, 2η1Q2G2

C1

1
QT

∑T−1
r=0

∑Q−1
q=1 η

r,q → 0. Therefore the right hand side converges
to 0, Claim D.1 is proved.

E Proof of Claim D.2

Proof. We consider the following problem with N = 2, which satisfies both Assumptions 1 and 2, with
f(x) = 0, ∀ x

f1(x) = x2, f2(x) = −x2. (63)

Each local iteration of the FedAvg is given by

xr+1
1 = (1− ηr)xr1, xr+1

2 = (1 + ηr)xr2. (64)

For simplicity, let us define y = [x1,x2]T , and define the matrix Dr = [1− ηr, 0; 0, 1 + ηr]. Then running
Q rounds of the FedAvg algorithm starting with r = kQ for some non-negative integer k ≥ 0, can be
expressed as

y(k+1)Q =

(k+1)Q−1∏
r=kQ+1

Dry
kQ+1, ykQ+1 =

1

2
11TDkQy

kQ. (65)

Therefore overall we have

y(k+1)Q =
1

2

(k+1)Q−1∏
r=kQ+1

Dr11
TDkQy

kQ. (66)

In particular, we pick ηr = 1√
r

when r 6= kQ + 1 and ηkQ+1 = 1/2. Then for Q > 1, it is easy to

compute the eigenvalues of the matrix 1
2

∏(k+1)Q−1
r=kQ+1 Dr11

TDkQ to be:

λ1 = 0, λ2 =
1

4

(k+1)Q−1∏
r=kQ+2

(1− 1√
r

)(1− 1√
kQ

) +
3

4

(k+1)Q−1∏
r=kQ+2

(1 +
1√
r

)(1 +
1√
kQ

).

It is clear that λ2 is strictly larger than one which indicates that the algorithm will diverge. �

F Proofs for Results in Section 3

F.1 Proof of Theorem 1

First let us prove Theorem 1 about the FedPD algorithm with Oracle I.
Towards this end, let us first introduce some notations. First recall that when Oracle I is used, the

local problem is solved such that the following holds true:∥∥∇xiL(xr+1
i ,xr0, λ

r
i )
∥∥2 ≤ ε1. (67)
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Note that if SGD is applied in Oracle I to solve the local problem, then this condition (67) is replaced with
the following

E[
∥∥∇xiL(xr+1

i ,xr0, λ
r
i )
∥∥2

] ≤ ε1. (68)

The difference does not significantly change the proofs and the results. So throughout the proof of
Theorem 1, we use (67) as the condition.

Throughout the proof, we denote the expectation taken on the communication rth iteration to the
r + 1th iteration conditioning on all the previous knowledge as Er+1.

Then we define the error between different nodes as

4r , [4xr0;4xr], with 4xr0 , max
i,j

∥∥xr0,i − xr0,j
∥∥ , 4xr , max

i,j

∥∥xri − xrj
∥∥ . (69)

Here,4xr0 denotes the maximum difference of estimated center model among all the nodes and4xr denotes
the maximum difference of local models among all nodes.

From the termination condition that generates xr+1
i (given in (67)), we have

∇fi(xr+1
i ) + λr+1

i = ∇fi(xr+1
i ) + λri +

1

η
(xr+1
i − xr0,i) = er+1

i , where
∥∥er+1

i

∥∥2 ≤ ε1, (70)

where the first equality holds because of the update rule of λi. Furthermore, from the update step of λr+1
i ,

we can explicitly write down the following expression

λr+1
i = λri +

1

η
(xr+1
i − xr0,i) = −∇fi(xr+1

i ) + er+1
i .

The main lemmas that we need are outlined below. Their proofs can be found in Sec. F.1.1– F.1.4.
The first lemma shows the sufficient descent of the local AL function.

Lemma 6. Suppose A1 holds true. Consider FedPD with Algorithm 4 (Oracle I) as the update rule. When
the local problem is solved such that (67) is satisfied, the difference of the local augmented Lagrangian is
bounded by

Li(xr+1
i ,xr+0,i , λ

r+1
i )− Li(xri ,xr0,i, λri )

≤ −1− 2Lη

2η

∥∥xr+1
i − xri

∥∥2 − 1

2η

∥∥∥xr+0,i − xr0,i

∥∥∥2
+ η

∥∥λr+1
i − λri

∥∥2
+
ε1
2L
.

(71)

Then we derive a key lemma about how the error propagates if the communication step is skipped.

Lemma 7. Suppose A1 and A5 hold. Consider FedPD with Algorithm 4 (Oracle I) as the update rule.
When the local problem is solved such that (67) is satisfied, the difference between the local models xri ’s and
the difference between local copies of the global models xr0,i’s are bounded by

Er+14r+1 ≤ 1

1− Lη
(A4r + ηB(δ + 2

√
ε1). (72)

where

A =

[
p(1 + Lη) Lη(1− Lη)

1 Lη

]
is a rank 1 matrix with eigenvalues (0, Lη + p(1 + Lη)) and B = [p(3 + Lη), 2]T .
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We define a virtual sequence {xr0} where xr0 ,
1
N

∑N
i=1 x

r
0,i which is the average of the local xr0,i and

we know that xr0,i = xr0 when r mod R = 1, that is, when the communication and aggregation step is
performed. Next, we bound the error between the local AL and the global AL evaluated at the virtual
sequence.

Lemma 8. Suppose A1 holds. Consider FedPD with Algorithm 4 (Oracle I) as the update rule. When
the local problem is solved such that (67) is satisfied, the difference between local AL and the global AL is
bounded as below:

1

N

N∑
i=1

[Li(xr+1
i ,xr+0,i , λ

r+1
i )− cLi(xr+1

i ,xr+1
0 , λr+1

i )] ≥ −(N − 1)

2Nη
(4xr+1

0 )2. (73)

Lastly we bound the original objective function using the global AL.

Lemma 9. Under A1 and A2, when the local problem is solved to ε1 accuracy, the difference between the
original loss and the augmented Lagrangian is bounded.

f(xr0) ≤ L(xr0,x
r
1, . . . ,x

r
N , λ

r
1, . . . , λ

r
N )− 1− 2Lη

Nη

N∑
i=1

‖xri − xr0‖
2 +

ε1
2L
. (74)

Using the previous lemmas, we can then prove Theorem 1.

F.1.1 Proof of Lemma 6

We divide the left hand side (LHS) of (71), i.e., Li(xr+1
i ,xr+0,i , λ

r+1
i )−Li(xri ,xr0,i, λri ), into the sum of three

parts:
Li(xr+1

i ,xr+0,i , λ
r+1
i )− Li(xri ,xr0,i, λri ) = Li(xr+1

i ,xr0,i, λ
r
i )− Li(xri ,xr0,iλri )

+ Li(xr+1
i ,xr0,i, λ

r+1
i )− Li(xr+1

i ,xr0,i, λ
r
i )

+ Li(xr+1
i ,xr+0,i , λ

r+1
i )− Li(xr+1

i ,xr0,i, λ
r+1
i ),

(75)

which correspond to the three steps in the algorithm’s update steps.
We bound the first difference by first applying A1 to −f(·):

−fi(xri ) ≤ −fi(xr+1
i ) +

〈
−∇fi(xr+1

i ),xri − xr+1
i

〉
+
L

2

∥∥xri − xr+1
i

∥∥2
,
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and obtain the following series of inequalities:

Li(xr+1
i ,xr0,i, λ

r
i )−Li(xri ,xr0,i, λri ) ≤

〈
∇fi(xr+1

i ),xr+1
i − xri

〉
+
L

2

∥∥xr+1
i − xri

∥∥2

+
〈
λri ,x

r+1
i − xri

〉
+

1

2η

∥∥xr+1
i − xr0,i

∥∥2 − 1

2η

∥∥xri − xr0,i
∥∥2

(a)
=

〈
∇fi(xr+1

i ) + λri ,x
r+1
i − xri

〉
+
L

2

∥∥xr+1
i − xri

∥∥2

+
1

2η

〈
xr+1
i + xri − 2xr0,i,x

r+1
i − xri

〉
(b)
=

〈
∇fi(xr+1

i ) + λri +
1

η
(xr+1
i − xr0,i),x

r+1
i − xri

〉
+
L

2

∥∥xr+1
i − xri

∥∥2

− 1

2η

∥∥xr+1
i − xri

∥∥2

(c)

≤ 1

2L

∥∥∥∥∇fi(xr+1
i ) + λri +

1

η
(xr+1
i − xr0,i)

∥∥∥∥2

+
L

2

∥∥xr+1
i − xri

∥∥2

− 1− Lη
2η

∥∥xr+1
i − xri

∥∥2

(d)

≤ − 1− 2Lη

2η

∥∥xr+1
i − xri

∥∥2
+
ε1
2L
.

(76)

In the above equation, in (a) we use the fact that ‖a‖2 − ‖b‖2 = 〈a+ b, a− b〉 when vector a, b has the
same length to the last two terms; in (b) we split the last term into 2xr+1

i − 2xr0,i and −xr+1
i + xri ; in (c)

we use the fact that 〈a, b〉 ≤ L
2 ‖a‖

2 + 1
2L ‖b‖

2); in (d) we apply the fact that xr+1
i is the inexact solution;

see (70).
Then we bound the second difference in (75) by the following:

Li(xr+1
i ,xr0,i, λ

r+1
i )− Li(xr+1

i ,xr0,i, λ
r
i ) =

〈
λr+1
i − λri ,xr+1

i − xr0,i
〉

(a)
=
〈
λr+1
i − λri , η(λr+1

i − λri )
〉

= η
∥∥λr+1

i − λri
∥∥2
,

(77)

where (a) directly comes from the update rule of λr+1
i .

Further we bound the third difference in (75) by the following:

Li(xr+1
i ,xr+0,i , λ

r+1
i )− Li(xr+1

i ,xr0,i, λ
r+1
i )

=
〈
λr+1
i ,xr+1

i − xr+0,i

〉
−
〈
λr+1
i ,xr+1

i − xr0,i
〉

+
1

2η

∥∥∥xr+1
i − xr+0,i

∥∥∥2
− 1

2η

∥∥xr+1
i − xr0,i

∥∥2

(a)
=
〈
λr+1
i ,xr0,i − xr+0,i

〉
+

1

2η

〈
2xr+1

i − 2xr+0,i + xr+0,i − xr0,i,x
r
0,i − xr+0,i

〉
=

〈
1

η
(ηλr+1

i + xr+1
i − xr+0,i ),x

r
0,i − xr+0,i

〉
− 1

2η

∥∥∥xr+0,i − xr0,i

∥∥∥2

(b)
= − 1

2η

∥∥∥xr+0,i − xr0,i

∥∥∥2
,

(78)
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where, in (a), we use the same reasoning as in (76) (a) and (b); in (b) we apply the update rule of xr+0,i in
the FedPD algorithm, which implies that the first term becomes zero.

Finally we sum up (76), (77), (78) and Lemma 6 is proved.

F.1.2 Proof of Lemma 7

First we derive the relation between
∥∥∥xr+1

i − xr+1
j

∥∥∥ for arbitrary i 6= j and 4r by using the definition of

ε1 (70): ∥∥∥xr+1
i − xr+1

j

∥∥∥ (70)
=
∥∥∥xr0,i − xr0,j − η(∇fi(xr+1

i ) + λri − er+1
i −∇fj(xr+1

j )− λrj + er+1
j )

∥∥∥
≤
∥∥xr0,i − xr0,j

∥∥+ η
∥∥∥∇fi(xr+1

i )−∇fj(xr+1
j )

∥∥∥
+ η

∥∥λri − λrj∥∥+ η(
∥∥er+1

i

∥∥+
∥∥∥er+1

j

∥∥∥)

(a)

≤ 4xr0 + η
∥∥∥∇fi(xr+1

i )−∇fi(xr+1
j ) +∇fi(xr+1

j )−∇fj(xr+1
j )

∥∥∥
+ η

∥∥λri − λrj∥∥+ 2η
√
ε1

(b)

≤ 4xr0 + Lη
∥∥∥xr+1

i − xr+1
j

∥∥∥+ η
∥∥∥∇fi(xr+1

j )−∇fj(xr+1
j )

∥∥∥
+ η

∥∥λri − λrj∥∥+ 2η
√
ε1

(c)

≤ 4xr0 + Lη
∥∥∥xr+1

i − xr+1
j

∥∥∥+ ηδ + η
∥∥λri − λrj∥∥+ 2η

√
ε1

(d)
=

1

1− Lη
4xr0 +

η

1− Lη
δ +

η

1− Lη
∥∥λri − λrj∥∥+

2η

1− Lη
√
ε1,

(79)

where in (a) we plug the definition of 4xr0 and er+1
i ; in (b) we use A1; (c) comes form A5; in (d) we move

the second term to the left and divide both side by 1− Lη.

Then we bound the difference
∥∥∥λri − λrj∥∥∥ by plugging in the expression of λri in (70), and note that

λri + 1
η (xr+1

i − xr0,i) = λr+1
i :∥∥λri − λrj∥∥ =

∥∥−∇fi(xri ) + eri +∇fj(xrj)− erj
∥∥

(a)

≤
∥∥∇fi(xri )−∇fi(xrj)∥∥+

∥∥∇fi(xrj)−∇fj(xrj)∥∥+ 2
√
ε1

(b)

≤ L
∥∥xri − xrj

∥∥+ δ + 2
√
ε1

(c)

≤ L4xr + δ + 2
√
ε1,

(80)

where (a) and (b) follow the same argument in (a), (b) and (c) of (79) ; in (c) we plug in the definition of
4xr.

Next we bound the difference
∥∥∥xr+1

0,i − xr+1
0,j

∥∥∥. With probability 1−p the aggregation step has just been

done at iteration r, xr+1
0,i = xr+1

0,j .With probability p, they are not equal, then we take expectation with
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communication probability p, and get

Er+1

∥∥∥xr+1
0,i − xr+1

0,j

∥∥∥ = p
∥∥∥xr+1

i − xr+1
j + η(λr+1

i − λr+1
j )

∥∥∥
≤ p

∥∥∥xr+1
i − xr+1

j

∥∥∥+ pη
∥∥∥λr+1

i − λr+1
j

∥∥∥
(a)

≤ p(1 + Lη)4xr+1 + pη(δ + 2
√
ε1),

(81)

where in (a) we plug in the definition of 4xr+1 and (80). As these relations hold true for arbitrary (i, j)

pairs, they are also true for the maximum of
∥∥∥xr+1

i − xr+1
j

∥∥∥ and
∥∥∥xr+1

0,i − xr+1
0,j

∥∥∥.

Therefore stacking (79) and (81) and plug in (80), we have

4xr+1 ≤ 1

1− Lη
(Lη4xr +4xr0) +

2η

1− Lη
(δ + 2

√
ε1),

Er+14xr+1
0 ≤p1 + Lη

1− Lη
(Lη4xr +4xr0) + p

η(3 + Lη)

1− Lη
(δ + 2

√
ε1).

(82)

Rewrite it into matrix form then we complete the proof of Lemma 7.

F.1.3 Proof of Lemma 8

Let us first recall that the definition of local AL is given below:

Li(xi,x0, λi) , fi(xi) + 〈λi,xi − x0〉+
1

2η
‖xi − x0‖2 .

Similar to (78), we have

Li(xr+1
i ,xr+0,i , λ

r+1
i )− Li(xr+1

i ,xr+1
0 , λr+1

i ) =
〈
λr+1
i ,xr+1

i − xr+0,i

〉
−
〈
λr+1
i ,xr+1

i − xr+1
0

〉
+

1

2η

∥∥∥xr+1
i − xr+0,i

∥∥∥2
− 1

2η

∥∥xr+1
i − xr+1

0

∥∥2

(a)
= − 1

2η

∥∥∥xr+0,i − xr+1
0

∥∥∥2

(b)
= − 1

2η

∥∥∥∥∥∥xr+0,i −
1

N

N∑
j=1

xr+0,j

∥∥∥∥∥∥
2

= − 1

2η

∥∥∥∥∥∥ 1

N

N∑
j=1

(xr+0,i − xr+0,j)

∥∥∥∥∥∥
2

(c)

≥ − 1

2ηN

∑
j 6=i

∥∥∥xr+0,i − xr+0,j

∥∥∥2

(d)

≥ −N − 1

2ηN
(4xr+1

0 )2,

(83)

where (a) follows the same argument in (78); in (b),we plug in the definition of xr+1
0 ; in (c) we use Jensen’s

inequality and we bound the term with 4xr+1
0 . Then the lemma is proved.
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F.1.4 Proof of Lemma 9

Applying A1, we have

fi(x
r
0) ≤ fi(x

r
i ) + 〈∇fi(xri ),xr0 − xri 〉+

L

2
‖xr0 − xri ‖

2

(70)
= Li(xri ,xr0, λri )− 〈eri ,xr0 − xri 〉 −

1− Lη
2η

‖xr0 − xri ‖
2

≤ Li(xri ,xr0, λri ) +
ε1
2L
− 1− 2Lη

2η
‖xr0 − xri ‖

2 .

(84)

Taking an average over N agents we are able to prove Lemma 9.

F.1.5 Proof of Theorem 1

First notice that from the optimality condition (70), the following holds:∥∥λri − λr−1
i

∥∥2 ≤ 2L2
∥∥xri − xr−1

i

∥∥2
+ 4ε1. (85)

Then we bound the gradients of L(xri ,x
r
0,i, λ

r
i ).∥∥∇xiLi(xri ,xr0,i, λri )

∥∥ =

∥∥∥∥∇fi(xri ) + λri +
1

η
(xri − xr0,i)

∥∥∥∥
(70)
=

∥∥∥∥∇fi(xri ) + λri +
1

η
(xri − xr0,i)−∇fi(xr+1

i )− λri −
1

η
(xr+1
i − xr0,i) + er+1

i

∥∥∥∥
≤ 1 + Lη

η

∥∥xr+1
i − xri

∥∥+
√
ε1.

(86)

Further, we note that, when no aggregation has been performed at iteration r, then xr0,i = xri + ηλri ,
so the following holds ∥∥∇x0Li(xri ,xr0,i, λri )

∥∥ =

∥∥∥∥λri +
1

η
(xri − xr0,i)

∥∥∥∥ = 0. (87)

When there the aggregation has been performed at iteration r, then xr0,i = 1
N

∑N
j=1(xrj + ηλrj), ∀i, so

we have

‖∇x0L(xr0,x
r
1, . . . ,x

r
N , λ

r
1, . . . , λ

r
N )‖ =

∥∥∥∥∥ 1

N

N∑
i=1

(λri +
1

η
(xri − xr0,i))

∥∥∥∥∥ = 0. (88)

Further we have:∥∥∇λiLi(xri ,xr0,i, λri )∥∥ =
∥∥xri − xr0,i

∥∥
≤
∥∥∥xri − xr−1

0,i

∥∥∥+
∥∥∥xr−1

0,i − xr0,i

∥∥∥
≤ η

∥∥λri − λr−1
i

∥∥+
∥∥∥xr−1

0,i − xr0,i

∥∥∥
≤ η(L

∥∥xri − xr−1
i

∥∥+ 2
√
ε1) +

∥∥∥xr−1
0,i − xr0,i

∥∥∥ .
(89)

Summing (86) and (89), denote
∥∥∥∇xiLi(xri ,xr0,i, λri )

∥∥∥ +
∥∥∥∇λiLi(xri ,xr0,i, λri )∥∥∥ as

∥∥∥∇Li(xri ,xr0,i, λri )∥∥∥ we

have
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∥∥∇Li(xri ,xr0,i, λri )∥∥ ≤ ∥∥∥xr−1
0,i − xr0,i

∥∥∥+
1 + Lη

η

∥∥xr+1
i − xri

∥∥+ Lη
∥∥xri − xr−1

i

∥∥+ (1 + 2η)
√
ε1. (90)

Squaring both sides of the above inequality, we obtain:

∥∥∇Li(xri ,xr0,i, λri )∥∥2 ≤ C6

(∥∥∥xr−1
0,i − xr0,i

∥∥∥2
+
∥∥xr+1

i − xri
∥∥2

+
∥∥xri − xr−1

i

∥∥2
+ ε1

)
, (91)

where C6 ≥ max{(1+Lη
η )2, (1 + 2η)2, L2η2}.

Apply (85) to Lemma 6 we have

1− 2Lη − 4L2η2

2η

∥∥xr+1
i − xri

∥∥2
+

1

2η

∥∥∥xr+0,i − xr0,i

∥∥∥2
+

1 + 8Lη

2L
ε1

≤ Li(xri ,xr0,i, λri )− Li(xr+1
i ,xr+0,i , λ

r+1
i ) +

1 + 8Lη

L
ε1.

(92)

Notice that when communication is not performed
∥∥∥xr0,i − xr+1

0,i

∥∥∥2
≤
∥∥∥xr0,i − xr+0,i

∥∥∥2
, and when communication

is performed

1

N

N∑
i=1

∥∥∥xr0,i − xr+1
0,i

∥∥∥2
=

2

N

N∑
i=1

∥∥∥xr0,i − xr+0,i

∥∥∥2
+

2

N

N∑
i=1

∥∥∥xr+0,i − xr+1
0,i

∥∥∥2

≤ 2

N

N∑
i=1

∥∥∥xr0,i − xr+0,i

∥∥∥2
+
N − 1

ηN
(4xr+1

0 )2,

(93)

where the last inequality holds due to the use of Jensen’s inequality, and the definition of 4xr+1
0 in (69).

It follows that summing both sides of (92) over i, we have

1− 2Lη − 4L2η2

2η

N∑
i=1

∥∥xr+1
i − xri

∥∥2
+

N∑
i=1

(
1

4η

∥∥∥xr+1
0,i − xr0,i

∥∥∥2
− N − 1

4η
(4xr+1

0 )2) +
N(1 + 8Lη)

2L
ε1

≤
N∑
i=1

(
Li(xri ,xr0,i, λri )− Li(xr+1

i ,xr+0,i , λ
r+1
i )

)
+
N(1 + 8Lη)

L
ε1.

(94)

Taking the expectation over the randomness in p, conditioning on the information before the communication
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the successive difference of Li,

Er+1
1

N

N∑
i=1

[Li(xri ,xr0,i, λri )− Li(xr+1
i ,xr+0,i , λ

r+1
i )] =

1

N

N∑
i=1

[Li(xri ,xr0,i, λri )− Li(xr+1
i ,xr+1

0,i , λ
r+1
i )]

+ Er+1
1

N

N∑
i=1

[Li(xr+1
i ,xr+1

0,i , λ
r+1
i )− Li(xr+1

i ,xr+0,i , λ
r+1
i )]

(a)
=

1

N

N∑
i=1

[Li(xri ,xr0,i, λri )− Li(xr+1
i ,xr+1

0,i , λ
r+1
i )]

+
1

N

N∑
i=1

[pLi(xr+1
i ,xr+1

0 , λr+1
i ) + (1− p)Li(xr+1

i ,xr+0,i , λ
r+1
i )− Li(xr+1

i ,xr+0,i , λ
r+1
i )]

=
1

N

N∑
i=1

[Li(xri ,xr0,i, λri )− Li(xr+1
i ,xr+1

0,i , λ
r+1
i )]

+ p
1

N

N∑
i=1

[Li(xr+1
i ,xr+1

0 , λr+1
i )− Li(xr+1

i ,xr+0,i , λ
r+1
i )]

(b)

≤ 1

N

N∑
i=1

[Li(xri ,xr0,i, λri )− Li(xr+1
i ,xr+1

0,i , λ
r+1
i )] + p

N − 1

2ηN
(4xr+1

0 )2,

(95)

where (a) expands the expectation on p, and use the fact that with probability p, xr+1
0,i = xr+0,i , and with

probability (1− p) xr+1
0 will be updated; in (b) we apply Lemma 8 to the last term.

Combine (94) and (95), we have

min{1− 2Lη − 4L2η2

2η
,

1

2η
,
1 + 8Lη

2L
} 1

N

N∑
i=1

Er+1

[∥∥xr+1
i − xri

∥∥2
+
∥∥∥xr+1

0,i − xr0,i

∥∥∥2
+ ε1

]

≤ 1

N

N∑
i=1

[
Li(xri ,xr0,i, λri )− Li(xr+1

i ,xr+1
0,i , λ

r+1
i )

]
+

1 + 8Lη

L
ε1 + p

(N − 1)

ηN
(4xr+1

0 )2.

(96)

Combining (91), (94) and (96), define C7 = 2C6/min{1−2Lη−4L2η2

2η , 1
2η ,

1+8Lη
2L } and sum up the iterations,

we have

1

N

N∑
i=1

T∑
r=0

E
∥∥∇Li(xri ,xr0,i, λri )∥∥2

(91)(94)

≤ 2C6

N

N∑
i=1

T∑
r=0

E
[∥∥∥xr0,i − xr+0,i

∥∥∥2
+
∥∥xri − xr+1

i

∥∥2
+

(N − 1)

ηN
(4xr+1

0 )2 + ε1

]
(96)

≤ C7

T∑
r=0

(
1

N

N∑
i=1

(Li(xri ,xr0,i, λri )− Li(xr+1
i ,xr+1

0,i , λ
r+1
i )) +

1 + 8Lη

L
ε1

)

+ pC7

T∑
r=0

N − 1

Nη
E(4xr+1

0 )2.

(97)
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Next we bound the last term. By iteratively applying Lemma 7 from τ = 0 to r and use the fact that
∆0 = 0, we have

E4xr+1
0 ≤ [1, 0]

r∑
τ=0

(
A

1− Lη
)τη

[p(3 + Lη), 2]T

1− Lη
(δ + 2

√
ε1). (98)

From Lemma 7 we have:

λmax

(
1

1− Lη
A

)
=
p(1 + Lη) + Lη

1− Lη
, C8.

So by taking norm square on both side of (98), we have

E(4xr+1
0 )2 ≤

∥∥∥∥∥[1, 0]
r∑

τ=1

(
A

1− Lη
)τη

[p(3 + Lη), 2]T

1− Lη
(δ + 2

√
ε1)

∥∥∥∥∥
2

≤

(
r∑

τ=1

Cτ8

)2
8η2(p2(3 + Lη)2 + 4)

(1− Lη)2
(δ2 + ε1)

≤ (1− Cr+1
8 )2 × 8η2(p2(3 + Lη)2 + 4)

(1− C8)2(1− Lη)2
(δ2 + ε1).

(99)

Substitute (99) into (97) and divide both side by T we have

1

N

N∑
i=1

1

T

T∑
r=0

E
∥∥∇Li(xri ,xr0,i, λri )∥∥2

≤ C7

T

(
L(x0

0,x
0
i , λ

0
i )− L(xTi ,x

T
0,i, λ

T
i )
)

+
C7(1 + 8Lη)

L
ε1

+
8pηC7(N − 1)(1− C1/(1−p)

8 )2(p2(3 + Lη)2 + 4)

N(1− C8)2(1− Lη)2
(δ2 + ε1).

From the initial conditions we have L(x0
0,x

0
i , λ

0
i ) = f(x0

0) and apply Lemma 9 we obtain

1

NT

N∑
i=1

T∑
r=0

E
∥∥∇Li(xri ,xr0,i, λri )∥∥2

≤ C7(f(x0
0)− f(xT0 ))

T
+
C7(1 + 8Lη)

L
ε1

+
8pηC7(N − 1)(1− C1/(1−p)

8 )2(p2(3 + Lη)2 + 4)

N(1− C8)2(1− Lη)2
(δ2 + ε1).

Finally we bound ‖∇f(xr0)‖2 by
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‖∇f(xr0)‖2 ≤ 2

∥∥∥∥∥∇f(xr0)− 1

N

N∑
i=1

∇xiLi(xri ,xr0,i, λri )

∥∥∥∥∥
2

+
2

N

N∑
i=1

∥∥∇xiLi(xri ,xr0,i, λri )
∥∥2

≤ 4

N

N∑
i=1

‖∇fi(xr0)−∇fi(xri )‖
2 + 4

∥∥∥∥∥ 1

Nη

N∑
i=1

(ηλri + xri − xr0,i)

∥∥∥∥∥
2

+
2

N

N∑
i=1

∥∥∇xiLi(xri ,xr0,i, λri )
∥∥2

(a)

≤ 4L2

N

N∑
i=1

‖xr0 − xri ‖
2 +

2

N

N∑
i=1

∥∥∇xiLi(xri ,xr0,i, λri )
∥∥2

=
4L2

N

N∑
i=1

∥∥∇λiLi(xri ,xr0,i, λri )∥∥2
+

2

N

N∑
i=1

∥∥∇xiLi(xri ,xr0,i, λri )
∥∥2

≤ 4L2

N

N∑
i=1

∥∥∇Li(xri ,xr0,i, λri )∥∥2
,

(100)

where in (a) we use the same argument in (87) and (88).
Therefore Theorem 1 is proved. During the proof, we need all C2, . . . , C7, C8 > 0, therefore, 0 < η <√

5−1
4L .

Finally, let us note that if the local problems are solved with SGD, then the local problem needs to be
solved such that the condition (68) holds true. As no other information of the local solvers except error
term eri is used in the proof, the proofs and results of FedPD with SGD as local solver will not change
much, except that all the results hold in expectation. Therefore we skip the proof for the SGD version.

F.1.6 Constants used in the proofs

In this subsection we list all the constants C2, . . . , C8 used in the proof of Theorem 1.

C2 ≥ 4L2C7, C3 = C8, C4 ≥
C2(1 + 8Lη)

L
,

C5 = 8C2, C6 ≥ max{(1 + Lη

η
)2, (1 + 2η)2, L2η2},

C7 = 2C6/min{1− 2Lη − 4L2η2

2η
,

1

2η
,
1 + 8Lη

2L
},

C8 =
p(1 + Lη) + Lη

1− Lη
,

we can see that when 0 < η <
√

5−1
4L , all the terms are positive.

G FedPD with Variance Reduction

In this section we provided an alternative oracle for FedPD which has a lower sample complexity.
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G.1 Algorithm description

Alternatively, when instantiating the local oracle using Algorithm 4, the original local problems are not
required to solve to ε1 accuracy. Instead, we successively optimize a linearized AL function:

L̃ri (xi) , f̃i(xi;x
r,q
i ) +

〈
λir,xi − xr0,i

〉
+

1

2η

∥∥xi − xr0,i
∥∥2
.

In the above expression, we linearize fi(xi) at inner iteration xr,qi as (γ is a constant)

f̃ ri (xi;x
r,q
i ) , f(xr,qi ) + 〈gr,qi ,xi − xri 〉+

1

2γ
‖xi − xr,qi ‖

2
,

where gr,qi is an approximation of ∇fi(xr,qi ). The optimizer has a closed-form expression:

xr,q+1
i =

η

η + γ
xr,qi +

γ

η + γ
xr0,i −

ηγ

η + γ
(gr,qi + λri ).

Algorithm 4 Oracle Choice II

Input: Li(xri ,xr0,i, λri ), Q, I,B
Initialize: xr,0i = xri ,

if r mod I = 0 then gr,0i = ∇fi(xr,0i )

else gr,0i = gr−1,Q
i

end if
for q = 0, . . . , Q− 1 do
xr,q+1
i = arg minxi

L̃i(xi,xr0,i, λri ;x
r,q
i , gr,qi )

gr,q+1
i = gr,qi + 1

B

∑B
b=1(hi(x

r,q+1
i ; ξr,qi,b )− hi(xr,qi ; ξr,qi,b ))

end for
Output: xr+1

i , xr,Qi , gr,Qi

In Oracle II, an agent i first decides whether to compute the full gradient ∇fi(xr,0i ), or to keep using

the previous estimate gr−1,Q
i . Then Q local steps are performed, each requires B local data samples. In

this scheme, Q can be chosen as any positive integer.
It is important to note that this oracle does not simply apply the VR technique (such as F-SVRG)

to solve the subproblem of optimizing Li(xi,xr0,i, λri ). That is, it is not a variation of Oracle I. Instead,

the VR technique is applied to the entire primal-dual iteration, and the full gradient evaluation ∇fi(xr,0i )
is only needed every I iteration r. Later we will see that if I is large enough, then there is an O(

√
M)

reduction of sample complexity.

G.2 Algorithm Convergence and Complexity

The convergence result of FedPD with Oracle II is given as follows:

Theorem 3. Suppose A1–A2 hold, and consider FedPD with Oracle II. Choose p = 0, η ∈
(
0, 1

3(Q+
√
QI/B)L

)
,

and γ > 5η

B
√
L

. Then, the following holds (where C9 > 0 is a constant):

1

T

T∑
r=0

E ‖∇f(xr0)‖2 ≤ C9

T
(f(x0

0)− f(x?)). (101)
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Remark 5. (Communication complexity): As p = 0, the communication round to achieve ε accuracy
is T = O(1/ε) which is independent of Q.

Remark 6. (Computation complexity): Note that the total number full gradient evaluation is
T/I + 1, each uses M samples. Meanwhile, the total number of mini-batch stochastic gradient evaluation
is TQ, each uses 2B samples per node. So the total sample complexity is O(M + MT/I + 2TQBN). In
order to keep the same convergence speed, we need stepsize η to be unchanged. Therefore, we choose

I =
√
M,B = I/QN =

√
M/QN , then the SC of Algorithm 4 is O(M +

√
M
ε ).

G.3 Proof of Theorem 3

Following the similar proof of Theorem 1, we first analyze the descent between each outer iteration. Notice
throughout the proof, we assume that p = 0, that is, there is no delayed communication. It follows that
the following holds:

xr+1
0,i =

1

N

N∑
j=1

xr+0,j , ∀i = 1, . . . , N.

We also recall that r is the (outer) stage index, and q is the local update index. First we provide a
series of lemmas.

Lemma 10. Under Assumption 1, consider FedPD with Algorithm 4 (Oracle II) as the update rule. The
difference of the local AL is bounded by:

Li(xr+1
i ,xr+1

0,i , λ
r+1
i )− Li(xri ,xr0,i, λri )

≤ − 1

2η

∥∥∥xr+1
0,i − xr0,i

∥∥∥2
−
(

1

2η
+

1

γ
− L− 3η

γ2

)∥∥∥xr,Qi − xr,Q−1
i

∥∥∥2

− (
1

2η
+

1

γ
− L− 9Q2L2η)

Q−1∑
q=1

∥∥∥xr,qi − xr,q−1
i

∥∥∥2

+

(
9Q2L2η +

3η

γ2

)∥∥∥xr−1,Q
i − xr−1,Q−1

i

∥∥∥2
+

1

2L

Q−2∑
q=0

‖∇fi(xr,qi )− gr,qi ‖
2

+ (
1

2L
+ 9η)

∥∥∥gr,Q−1
i −∇fi(xr,Q−1

i )
∥∥∥2

+ 9η
∥∥∥gr−1,Q−1

i −∇fi(xr−1,Q−1
i )

∥∥∥2

+

〈
λr+1
i +

1

η
(xr+1
i − xr+1

0,i ),xr+1
0,i − xr0,i

〉
.

Then we deal with the variance of the stochastic gradient estimations.

Lemma 11. Suppose A1 holds true and the samples are randomly sampled according to (13), consider
FedPD with Algorithm 4 (Oracle II) as the update rule. The expected norm square of the difference between
gr,q+1
i and ∇fi(xr,q+1

i ) is bounded by

E
∥∥∥gr,q+1

i −∇fi(xr,q+1
i )

∥∥∥2
≤ L2

B

{r,q+1}∑
τ={r0,1}

E
∥∥xτi − xτ−1

i

∥∥2
. (102)

Lastly we upper bound the original loss function.
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Lemma 12. Under A1 and A2, the difference between the original loss and the AL is bounded as below:

E f(xr0) ≤ EL(xr0,x
r
1, . . . ,x

r
N , λ

r
1, . . . , λ

r
N )− 1− 3Lη

2Nη

N∑
i=1

E ‖xri − xr0‖
2

+
(1 + Lγ)2 + L2γ2

4Lγ2

 1

B

{r−1,Q−1}∑
τ={r0,1}

E
∥∥xτi − xτ−1

i

∥∥2
+ E

∥∥∥xr−1,Q
i − xr−1,Q−1

i

∥∥∥2

 . (103)

G.3.1 Proof of Lemma 10

Let us first express the difference of the local AL as following:

Li(xr+1
i ,xr+1

0,i , λ
r+1
i )− Li(xri ,xr0,i, λri ) (104)

= Li(xr+1
i ,xr0,i, λ

r
i )− Li(xri ,xr0,i, λri ) + Li(xr+1

i ,xr0,i, λ
r+1
i )− Li(xr+1

i ,xr0,i, λ
r
i )

+ Li(xr+1
i ,xr+1

0,i , λ
r+1
i )− Li(xr+1

i ,xr0,i, λ
r+1
i ),

where the above three differences respectively correspond to the three steps in the algorithm’s update steps.
Let us bound the above three differences one by one. First, note that we have the following decomposition

(by using the fact that xr,Q+1
i = xr+1

i and xr,1i = xri ):

Li(xr+1
i ,xr0,i, λ

r
i )− Li(xri ,xr0,i, λri ) =

Q∑
q=1

(
Li(xr,q+1

i ,xr0,i, λ
r
i )− Li(x

r,q
i ,xr0,i, λ

r
i )
)
. (105)

Each term on the right hand side (RHS) of the above equality can be bounded by (see a similar
arguments in (76)):

Li(xr,q+1
i ,xr0,i, λ

r
i )−Li(x

r,q
i ,xr0,i, λ

r
i ) ≤

〈
∇fi(xr,qi ) + λri +

1

η
(xr,q+1 − xr0,i),x

r,q+1
i − xr,qi

〉
− 1− Lη

2η

∥∥∥xr,q+1
i − xr,qi

∥∥∥2

(a)
=

〈
∇fi(xr,qi )− gr,qi −

1

γ
(xr,q+1 − xr,qi ),xr,q+1

i − xr,qi

〉
− (

1

2η
− L

2
)
∥∥∥xr,q+1

i − xr,qi

∥∥∥2

=
〈
∇fi(xr,qi )− gr,qi ,xr,q+1

i − xr,qi

〉
− (

1

2η
+

1

γ
− L

2
)
∥∥∥xr,q+1

i − xr,qi

∥∥∥2

(b)

≤ 1

2L
‖∇fi(xr,qi )− gr,qi ‖

2 − (
1

2η
+

1

γ
− L)

∥∥∥xr,q+1
i − xr,qi

∥∥∥2
,

(106)

where in (a) we use the optimal condition that ∇xiL̃i(x
r,q+1
i ,xr0,i, λ

r
i ;x

r,q
i , gr,qi ) = 0 which gives us the

following relation

λri +
1

η
(xr,q+1
i − xr0,i) + gr,qi +

1

γ
(xr,q+1
i − xr,qi ) = 0; (107)

42



in (b) we use the fact that 2 〈a, b〉 ≤ L ‖a‖2 + 1
L ‖b‖

2. Therefore, the first difference in the RHS of (104) is
given by

Li(xr+1
i ,xr0,i, λ

r
i )− Li(xri ,xr0,i, λri )

≤ 1

2L

Q∑
q=1

‖∇fi(xr,qi )− gr,qi ‖
2 − (

1

2η
+

1

γ
− L)

Q∑
q=1

∥∥∥xr,q+1
i − xr,qi

∥∥∥2
. (108)

The other two differences in (104) can be explicitly expressed as:

Li(xr+1
i ,xr0,i, λ

r+1
i )− Li(xr+1

i ,xr0,i, λ
r
i ) = η

∥∥λr+1
i − λri

∥∥2
, (109)

Li(xr+1
i ,xr+1

0,i , λ
r+1
i )− Li(xr+1

i ,xr0,i, λ
r+1
i )

= − 1

2η

∥∥∥xr+1
0,i − xr0,i

∥∥∥2
+

〈
λr+1
i +

1

η
(xr+1
i − xr+1

0,i ),xr+1
0,i − xr0,i

〉
. (110)

Next we bound
∥∥λr+1

i − λri
∥∥2

. Notice that the from the update rule the following holds:

λr+1
i = λri +

1

η
(xr,Qi − xr0,i)

(107)
= −1

γ
(xr,Qi − xr,Q−1

i )− gr,Q−1. (111)

Using the above property, we have

∥∥λr+1
i − λri

∥∥2
=

∥∥∥∥1

γ
(xr,Qi − xr,Q−1

i ) + gr,Q−1
i − 1

γ
(xr−1,Q
i − xr−1,Q−1

i )− gr−1,Q−1
i

∥∥∥∥2

(a)

≤ 3
∥∥∥gr,Q−1

i − gr−1,Q−1
i

∥∥∥2
+

3

γ2

∥∥∥xr,Qi − xr,Q−1
i

∥∥∥2
+

3

γ2

∥∥∥xr−1,Q
i − xr−1,Q−1

i

∥∥∥2
.

(112)

where in (a) we apply Cauchy-Schwarz inequality. Next we bound
∥∥∥gr,Q−1

i − gr−1,Q−1
i

∥∥∥2
by

∥∥∥gr,Q−1
i − gr−1,Q−1

i

∥∥∥2

=
∥∥∥gr,Q−1

i −∇fi(xr,Q−1
i ) +∇fi(xr,Q−1

i )−∇fi(xr−1,Q−1
i ) +∇fi(xr−1,Q−1

i )− gr−1,Q−1
i

∥∥∥2

(a)

≤ 3
∥∥∥gr,Q−1

i −∇fi(xr,Q−1
i )

∥∥∥2
+ 3

∥∥∥gr−1,Q−1
i −∇fi(xr−1,Q−1

i )
∥∥∥2

+ 3L2
∥∥∥xr,Q−1

i − xr−1,Q−1
i

∥∥∥2

(b)

≤ 3
∥∥∥gr,Q−1

i −∇fi(xr,Q−1
i )

∥∥∥2
+ 3

∥∥∥gr−1,Q−1
i −∇fi(xr−1,Q−1

i )
∥∥∥2

+ 3Q2L2
Q−1∑
q=1

∥∥∥xr,qi − xr,q−1
i

∥∥∥2
+ 3Q2L2

∥∥∥xr−1,Q
i − xr−1,Q−1

i

∥∥∥2
,

where in (a) and (b) we both apply Cauchy-Schwarz inequality, in (a) we use A1 to the last term and in
(b) we notice xr−1,Q

i = xr,0i .
Substitute (113) to (112) and sum the three parts, we have
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Li(xr+1
i ,xr+1

0,i , λ
r+1
i )− Li(xri ,xr0,i, λri )

≤ − 1

2η

∥∥∥xr+1
0,i − xr0,i

∥∥∥2
− (

1

2η
+

1

γ
− L− 3η

γ2
)
∥∥∥xr,Qi − xr,Q−1

i

∥∥∥2

− (
1

2η
+

1

γ
− L− 9Q2L2η)

Q−1∑
q=1

∥∥∥xr,qi − xr,q−1
i

∥∥∥2

+ (9Q2L2η +
3η

γ2
)
∥∥∥xr−1,Q

i − xr−1,Q−1
i

∥∥∥2
+

1

2L

Q−2∑
q=0

‖∇fi(xr,qi )− gr,qi ‖
2

+ (
1

2L
+ 9η)

∥∥∥gr,Q−1
i −∇fi(xr,Q−1

i )
∥∥∥2

+ 9η
∥∥∥gr−1,Q−1

i −∇fi(xr−1,Q−1
i )

∥∥∥2

+

〈
λr+1
i +

1

η
(xr+1
i − xr+1

0,i ),xr+1
0,i − xr0,i

〉
,

which complete the proof of Lemma 10.

G.3.2 Proof of Lemma 11

To study E ‖gr,qi −∇fi(x
r,q
i )‖2, we denote the latest iteration before r that computes full gradients as r0.

That is, in r0 we have gr0,0i = ∇fi(xr0,0i ). By the description of the algorithm we know

r0 = kI, k ∈ N, rQ+ q − r0Q ≤ IQ.

That is, r0 is a multiple of I and there is no more than IQ local update steps between step {r0, 0} and
step {r, q}. By the update rule of gr,qi , we have

gr,q+1
i −∇fi(xr,q+1

i ) =gr,qi −∇fi(x
r,q+1
i ) +

1

B

B∑
b=1

(hi(x
r,q+1
i ; ξr,qi,b )− hi(xr,qi ; ξr,qi,b )). (113)

Take expectation on both sides, we have

E{ξr,qi,b }
B
b=1

[gr,q+1
i −∇fi(xr,q+1

i )]

= gr,qi −∇fi(x
r,q+1
i ) + E{ξr,qi,b }

B
b=1

[
1

B

B∑
b=1

(hi(x
r,q+1
i ; ξr,qi,b )− hi(xr,qi ; ξr,qi,b ))]

= gr,qi −∇fi(x
r,q+1
i ) +∇fi(xr,q+1

i )−∇fi(xr,qi )

= gr,qi −∇fi(x
r,q
i ).
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By using the fact that E[X2] = [EX]2 + E[[X − EX]2] and substitute (114) we have

E{ξr,qi,b }
B
b=1

∥∥∥gr,q+1
i −∇fi(xr,q+1

i )
∥∥∥2

=
∥∥∥E{ξr,qi,b }

B
b=1

[gr,q+1
i −∇fi(xr,q+1

i )]
∥∥∥2

+ E{ξr,qi,b }
B
b=1

∥∥∥gr,q+1
i −∇fi(xr,q+1

i )− E{ξr,qi,b }
B
b=1

[gr,q+1
i −∇fi(xr,q+1

i )]
∥∥∥2

(114)
= ‖gr,qi −∇fi(x

r,q
i )‖2

+ E{ξr,qi,b }
B
b=1

∥∥∥∥∥ 1

B

B∑
b=1

(hi(x
r,q+1
i ; ξr,qi,b − hi(x

r,q
i ; ξr,qi,b ))−∇fi(xr,q+1

i ) +∇fi(xr,qi )

∥∥∥∥∥
2

(a)

≤ ‖gr,qi −∇fi(x
r,q
i )‖2 +

1

B2

B∑
b=1

E{ξr,qi,b }
B
b=1

∥∥∥hi(xr,q+1
i ; ξr,qi,b )− hi(xr,qi ; ξr,qi,b ))

∥∥∥2

(b)

≤ ‖gr,qi −∇fi(x
r,q
i )‖2 +

L2

B

∥∥∥xr,q+1
i − xr,qi

∥∥∥2
,

where (a) comes form the fact that we view hi(x
r,q+1
i ; ξr,qi,b )− hi(xr,qi ; ξr,qi,b ) as X and by identically random

sampling strategy we have EX = ∇fi(xr,q+1
i )−∇fi(xr,qi ) and E[[X − EX]2 ≤ E[X]2, in (b) we use A1.

Iteratively taking expectation until {r, q} = {r0, 0}, we have

E
∥∥∥gr,q+1

i −∇fi(xr,q+1
i )

∥∥∥2
≤ L2

B

{r,q+1}∑
τ={r0,1}

E
∥∥xτi − xτ−1

i

∥∥2
, (114)

which completes the proof.

G.3.3 Proof of Lemma 12

Applying A1, we have

fi(x
r
0) ≤ fi(x

r
i ) + 〈∇fi(xri ),xr0 − xri 〉+

L

2
‖xr0 − xri ‖

2

= Li(xri ,xr0, λri )− 〈∇fi(xri ) + λri ,x
r
0 − xri 〉 −

1− Lη
2η

‖xr0 − xri ‖
2

≤ Li(xri ,xr0, λri ) +
1

4L
‖∇fi(xri ) + λri ‖

2 − 1− 3Lη

2η
‖xr0 − xri ‖

2 .

(115)
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Then notice xri = xr−1,Q
i and apply (111), we can bound E ‖∇fi(xri ) + λri ‖

2 by the following:

E ‖∇fi(xri ) + λri ‖
2 (111)

= E
∥∥∥∥∇fi(xr−1,Q

i )− gr−1,Q−1
i − 1

γ
(xr−1,Q
i − xr−1,Q−1

i )

∥∥∥∥2

(a)

≤ (1 +
(1 + Lγ)2

L2γ2
)E
∥∥∥∇fi(xr−1,Q−1

i )− gr−1,Q−1
i

∥∥∥2

+ (1 +
L2γ2

(1 + Lγ)2
)(1 +

1

Lγ
)E
∥∥∥∇fi(xr−1,Q

i )−∇fi(xr−1,Q−1
i )

∥∥∥2

+
(1 + L2γ2

(1+Lγ)2
)(1 + Lγ)

γ2
E
∥∥∥xr−1,Q

i − xr−1,Q−1
i

∥∥∥2

(b)

≤ (1 + Lγ)2 + L2γ2

Bγ2

{r−1,Q−1}∑
τ={r0,1}

E
∥∥xτi − xτ−1

i

∥∥2

+ (1 +
L2γ2

(1 + Lγ)2
)

(
(1 +

1

Lγ
)L2 +

1 + Lγ

γ2

)
E
∥∥∥xr−1,Q

i − xr−1,Q−1
i

∥∥∥2

=
(1 + Lγ)2 + L2γ2

Bγ2

{r−1,Q−1}∑
τ={r0,1}

E
∥∥xτi − xτ−1

i

∥∥2

+
(1 + Lγ)2 + L2γ2

γ2
E
∥∥∥xr−1,Q

i − xr−1,Q−1
i

∥∥∥2
,

(116)

where in (a) we apply Cauchy-Schwarz inequality twice, that is

‖x+ y + z‖2 ≤ (1 +
1

a
) ‖x‖2 + (1 + a) ‖y + z‖2 ≤ (1 +

1

a
) ‖x‖2 + (1 + a)(1 + b) ‖y‖2 + (1 + a)(1 +

1

b
) ‖z‖2 ;

in (b) we apply Lemma 11 to the first term and apply A1 to the second term.
Substitute (116) to (115) and average over the agents, Lemma 12 is proved.

G.3.4 Proof of Theorem 3

By the update step of xr0, following (87) we have∥∥∥∥∥ 1

N

N∑
i=1

∇x0,iLi(xri ,xr0,i, λri )

∥∥∥∥∥ =

∥∥∥∥∥ 1

N

N∑
i=1

(
1

η
(xri − xr0,i) + λri )

∥∥∥∥∥ = 0.
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We also have∥∥∇Li(xri ,xr0,i, λri )∥∥2

=
∥∥∇xiLi(xri ,xr0,i, λri )

∥∥2
+
∥∥∇λiLi(xri ,xr0,i, λri )∥∥2

=

∥∥∥∥∇fi(xri ) + λri +
1

η
(xri − xr0,i)

∥∥∥∥2

+
∥∥xri − xr0,i

∥∥2

(a)
=

∥∥∥∥∇fi(xri )− gr,0i − η + γ

ηγ
(xr,1i − xri )

∥∥∥∥2

+
∥∥∥xri − xr0,i + xr−1

0,i − xr−1
0,i

∥∥∥2

≤
∥∥∥∥∇fi(xri )− gr,0i − η + γ

ηγ
(xr,1i − xri )

∥∥∥∥2

+ 2
∥∥∥xri − xr−1

0,i

∥∥∥2
+ 2

∥∥∥xr0,i − xr−1
0,i

∥∥∥2

≤ 2
∥∥∥∇fi(xri )− gr,0i ∥∥∥2

+ 2(
η + γ

ηγ
)2
∥∥∥xr,1i − xri

∥∥∥2
+ 2η2

∥∥λri − λr−1
i

∥∥2
+ 2

∥∥∥xr0,i − xr−1
0,i

∥∥∥2
.

where in (a), the first term is obtained by plugging in (111) given below

λri = −gr,0i −
1

γ
(xr,1i − xri )−

1

η
(xr,1i − xr0,i).

Next we take expectation and substitute (112), (113),

E
∥∥∇Li(xri ,xr0,i, λri )∥∥2

≤ 2E
∥∥∥∇fi(xri )− gr,0i ∥∥∥2

+ 2(
η + γ

ηγ
)2 E

∥∥∥xr,1i − xri

∥∥∥2
+ 2E

∥∥∥xr0,i − xr−1
0,i

∥∥∥2

+
6η2

γ2
(γ2 E

∥∥∥gr−1,Q−1
i − gr−2,Q−1

i

∥∥∥2
+ E

∥∥∥xr−1,Q
i − xr−1,Q−1

i

∥∥∥2
+ E

∥∥∥xr−2,Q
i − xr−2,Q−1

i

∥∥∥2
)

(a)

≤ 2L2

B

{r,0}∑
τ={r0,1}

E
∥∥xτi − xτ−1

i

∥∥2
+ 2(

η + γ

ηγ
)2 E

∥∥∥xr,1i − xri

∥∥∥2
+ 2E

∥∥∥xr0,i − xr−1
0,i

∥∥∥2

+
6η2

γ2
(E
∥∥∥xr−1,Q

i − xr−1,Q−1
i

∥∥∥2
+ E

∥∥∥xr−2,Q
i − xr−2,Q−1

i

∥∥∥2
)

+ 18η2

(
E
∥∥∥gr−1,Q−1

i −∇fi(xr−1,Q−1
i )

∥∥∥2
+ E

∥∥∥gr−2,Q−1
i −∇fi(xr−2,Q−1

i )
∥∥∥2
)

+ 18η2Q2L2

Q−1∑
q=1

E
∥∥∥xr−1,q

i − xr−1,q−1
i

∥∥∥2
+ E

∥∥∥xr−2,Q
i − xr−2,Q−1

i

∥∥∥2

 ,

where we substitute Lemma 11 and (113) in (a).
Taking expectation of (102), summing over r = 0 to r = T − 1 and average over the agents, we have
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the following

1

N

N∑
i=1

E[Li(xTi ,xT0,i, λTi )− Li(x0
i ,x

0
0,i, λ

0
i )] ≤ −

1

2η

T−1∑
r=0

E
∥∥xr+1

0 − xr0
∥∥2

− (
1

2η
+

1

γ
− L− 6η

γ2
− 9Q2L2η)

1

N

N∑
i=1

Q−1∑
q=0

T−1∑
r=0

E
∥∥∥xr,q+1

i − xr,q−1
i

∥∥∥2

+ (
1

2L
+ 18η)

1

N

N∑
i=1

T−1∑
r=0

Q−1∑
q=0

E ‖∇fi(xr,qi )− gr,qi ‖
2

+
T−1∑
r=0

1

N
E

〈
N∑
i=1

(λr+1
i +

1

η
(xr+1
i − xr+1

0,i )),xr+1
0,i − xr0,i

〉
(a)

≤ − (
1

2η
+

1

γ
− L− 6η

γ2
− 9Q2L2η)

1

N

N∑
i=1

Q−1∑
q=0

T−1∑
r=0

E
∥∥∥xr,q+1

i − xr,q−1
i

∥∥∥2

− 1

2η

T−1∑
r=0

E
∥∥xr+1

0 − xr0
∥∥2

+
(1 + 18Lη)LIQ

2B

1

N

N∑
i=1

T−1∑
r=0

Q−1∑
q=0

E
∥∥∥xr,q+1

i − xr,q−1
i

∥∥∥2

= − C10

N

N∑
i=1

Q−1∑
q=0

T−1∑
r=0

E
∥∥∥xr,q+1

i − xr,q−1
i

∥∥∥2
− 1

2η

T−1∑
r=0

E
∥∥xr+1

0 − xr0
∥∥2
,

(117)

where in (a) we apply Lemma 11 and (87).
Finally, in the last equation of (117), we have defined the constant C10 as

C10 :=
1

2η
+

1

γ
− L− 6η

γ2
− 9Q2L2η − (1 + 18Lη)LIQ

2B
.

Then by taking expectation and applying Lemma 12, we obtain

E[f(xT0 )− f(x0
0)]

≤ −
C10 − (1+Lγ)2+L2γ2

4BLγ2

N

N∑
i=1

Q−1∑
q=0

T−1∑
r=0

E
∥∥∥xr,q+1

i − xr,q−1
i

∥∥∥2
− 1

2η

T−1∑
r=0

E
∥∥xr+1

0 − xr0
∥∥2
,

where by the initialization that x0
i = x0

0 we have f(x
0
0) = 1

N

∑N
i=1 Li(x0

i ,x
0
0,i, λ

0
i ).

Combine (117) and (118), we can find a positive constant C11 satisfying

C11 ≤ min

{
C12/C13, 1/(4η)

}
, (118)

where we have defined

C12 , C10 −
(1 + Lγ)2 + L2γ2

4BLγ2
,

C13 , Q

(
2(
η + γ

ηγ
)2 +

2I(1 + 18η2)L2

B
+

3L(1 + 9Lη)η2

2Bγ2
+ 18Q2L2η2

)
(119)
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so that the following holds

C11

NT

T∑
r=0

N∑
i=1

E
∥∥∇Li(xri ,xr0,i, λri )∥∥2 ≤

C10 − (1+Lγ)2+L2γ2

4BLγ2

NT

N∑
i=1

Q−1∑
q=0

T−1∑
r=0

E
∥∥∥xr,q+1

i − xr,q−1
i

∥∥∥2

+
1

2ηT

T−1∑
r=0

E
∥∥xr+1

0 − xr0
∥∥2

≤ 1

T
(f(x0

0)− E f(xT0 )) ≤ 1

T
(f(x0

0)− f(x?)).

(120)

Similar to the proof of Theorem 1, we can bound ‖∇f(xr0)‖2 by 1
N

∑N
i=1 ‖∇Li(xri ,xr0, λri )‖

2 , therefore
Theorem 3 is proved.

During the prove we need

C9 = 4L2/C11, C10 =
1

2η
+

1

γ
− L− 6η

γ2
− 9Q2L2η − (1 + 18Lη)LIQ

2B
,

C11 ≤ min


(
C10 − (1+Lγ)2+L2γ2

4BLγ2

)
Q
(

2(η+γ
ηγ )2 + 2I(1+18η2)L2

B + 3L(1+9Lη)η2

2Bγ2
+ 18Q2L2η2

) , 1

4η


to be positive constant. By selecting γ > 5

B
√
L
η, and 0 < η < 1

3(Q+
√
QI/B)L

, this is guaranteed.

H Additional Numerical Results

H.1 Penalized Logistic Regression

In this experiment, we consider the penalized regression problem [30], whose loss function evaluated on a
single sample (a, b) = ξ is given by:

F (x; (a, b)) = log(1 + exp(−bxTa)) +
D∑
d=1

βα(x[d])2

1 + α(x[d])2
. (121)

Here x[d] denotes the dth component of x. The feature vector and model parameter a,x ∈ RD have
dimension D and b ∈ {−1, 1} is the label corresponding to the feature. During the simulation, we set the
constants to be α = 1 and β = 0.1.

In the experiment, we use two ways to generate the data. In the first case (referred to as the “weakly
non-i.i.d” case), the features and the labels on the agents are randomly generated, so the local data sets
are not very non-i.i.d. In the second case (referred to as the “strong non-i.i.d.” case), we first generate the
feature vector a’s following the standard Normal distribution, then we generate the local model xi on the
ith agent by using uniform distribution in the range of [−10, 10] for each component. Then we compute
the label b’s according to the local models and the features and add some uniform noise. In this case, the
data distribution on the agents are more non-i.i.d. compared to the first case. In both cases, there are 400
samples on each agent with total 100 agents.
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The total number of iterations T is set as 600 for all algorithms. We choose the stepsize to be
η = 4 for FedAvg-GD with local update number Q = 8 and for FedAvg-SGD we use diminishing stepsize
η = 4/

√
Qr + q + 1 with Q = 600. For FedProx we use VR algorithm as the local solver and set Q = 8,

ρ = 1 and stepsize η = 4. For FedPD, we also use the same stepsize η = 4 with Q = 8 with local GD. For
FedPD-SGD, we also set η = 4 and uses local step size η1 = 1

Q with inner iteration number Q = 600. Lastly
for FedPD with VR, we set the parameters to be η = 4, γ = 4, I = 100, Q = 2 and B = 1. The choice of
the stepsize is the same among all the algorithms. We used grid search on stepsizes η ∈ {5, 2, 1, 0.1, 0.01}
and the relative performance of the algorithms are similar to what we will show shortly.

(a) The stationary gap of FedAvg, FedProx
and FedPD with respect to the number of
communication rounds.

(b) The stationary gap of of FedAvg, FedProx
and FedPD with respect to the number of
samples.

Figure 4: The convergence result of the algorithms on penalized logistic regression with weakly non-i.i.d.
data.

Fig. 4 shows the convergence results of the penalized logistic regression problem with the first data set.
In Fig. 4(a), we compare the convergence of the tested algorithms w.r.t the communication rounds. It is
clear that FedProx and FedPD with R = 1 (i.e., no communication skipping) are comparable. Meanwhile,
FedAvg with local GD will not converge to the stationary point with a constant stepsize when local update
step Q > 1. By skipping half of the communication, FedPD with local GD can still achieve a similar
error as FedAvg, but using fewer communication rounds. In Fig. 4(b), we compare the sample complexity
of different algorithms. It can be shown that when using the same number of samples for computation,
FedPD with Oracle II (FedPD-VR) converges the fastest among all the algorithms. FedProx uses VR to
solve the inner problem and converges the second fastest. Fig 5 shows the convergence results with the
strongly non-i.i.d. data set. We can see that the algorithms using stochastic solvers become less stable
compared with the case when the data sets are weakly non-i.i.d. Further, FedPD-VR and FedPD-GD with
R = 1 are able still to converge to the global stationary point while FedProx will achieve a similar error as
the FedAvg with local GD.
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(a) The stationary gap of FedAvg, FedProx
and FedPD with respect to the number of
communication rounds.

(b) The stationary gap of of FedAvg, FedProx
and FedPD with respect to the number of
samples.

Figure 5: The convergence result of the algorithms on penalized logistic regression with strongly non-i.i.d.
data.

H.2 Handwritten Character Classification

In the second experiment, we compare FedPD with FedAvg and FedProx on the FEMNIST data set [31].
The FEMNIST data set collects the handwritten characters, including numbers 1–10 and the upper- and
lower-case letters A–Z and a–z, from different writers and is separated by the writers, therefore the data
set naturally preserves non-i.i.d-ness.

The entire data set contains 805,000 samples collected from 3,550 writers. In our experiments, we use
the data collected from 100 writers with an average of 300 samples per writer and the size of the whole
data set is 29,214. We set the number of agent N = 90, the first ten agents are assigned with data from two
writers, and the rest of the agents are assigned with data form one writer. Therefore, the data distribution
is neither i.i.d. nor balanced. We use the neural network given in [31] as the training model, which consists
of 2 convolutional layers and two fully connected layers. The output layer has 62 neurons that matches
the number of classes in the FEMNIST data set.

The numerical results shown in Fig. 6 in the main text were generated by running MATLAB codes on
Amazon Web Services (AWS), with Intel Xeon E5-2686 v4 CPUs. In the training phase, we train the CNN
model with FedAvg, FedProx and FedPD. In Fig. 6(a), for FedAvg, we use gradient descent for Q = 8 local
update steps between each communication rounds; to solve the local problem for FedProx, we use SARAH
with Q = 20 local steps; we use FedPD with Oracle II, computing full gradient every I = 20 communication
rounds and perform Q = 2 local steps between two communication rounds. The hyper-parameters we use
for FedAvg is η = 0.005; for FedProx we use ρ = 1 and stepsize η = 0.01; for FedPD we use η = 100 and
γ = 400. In Fig. 6(b), we use FedPD with Oracle I, with Q = 20, η = 100 and γ = 400 and the mini-batch
size 2. We set the communication saving to p = 0 and p = 0.5.

The results shown in Fig. 7 were generated by running Python codes (using the the PyTorch package 1)
with AMD EPYC 7702 CPUs and an NVIDIA V100 GPU.

1PyTorch: An Imperative Style, High-Performance Deep Learning Library, https://pytorch.org/

51

https://pytorch.org/


(a) The testing accuracy of FedAvg-GD, FedProx-VR
and FedPD-VR with respect to the number of samples.

(b) The testing accuracy of FedPD-SGD with R = 1 and
R = 2 with respect to the number of communications.

Figure 6: The convergence result of the algorithms on training neural network for handwriting character
classification.

In the training phase, we train with FedProx, FedAvg and FedPD with a total T = 1000 outer iterations.
The local problems are solved with SGD for Q = 300 local iterations and the mini-batch size in evaluating
the stochastic gradient is 2. The stepsize choice for FedAvg, FedProx and FedPD are 0.001, 0.01 and
0.01, the hyper-parameter of FedProx is ρ = 1 and for FedPD η = 1. In the experiment, we set the
communication saving for FedPD to be p = 0, p = 0.5 and p = 0.25. Note that we also tested FedAvg with
larger stepsize 0.01, but the algorithm becomes unstable, and its performance degrages significantly. As
shown in Fig. 7 and 8, FedAvg is slower than FedPD and FedProx, while FedProx has similar performance
as FedPD when R = 1. Further, we can see that as the frequency of communication of FedPD decreases,
the final accuracy decreases and the final loss increases. However, the drop of accuracy is not significant,
so FedPD is able to achieve a better performance with the same number of communication rounds.
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(a) The loss value of FedAvg-SGD,
FedProx-SGD and FedPD-SGD with respect
to the number of communication rounds.

(b) The training accuracy of of FedAvg-SGD,
FedProx-SGD and FedPD-SGD with respect to
the number of communication rounds.

Figure 7: The convergence results of the algorithms on training neural networks on the federated
handwritten characters classification problem.

(a) The testing loss value of FedAvg-SGD,
FedProx-SGD and FedPD-SGD with respect to
the number of communication rounds.

(b) The testing accuracy of of FedAvg-SGD,
FedProx-SGD and FedPD-SGD with respect to
the number of communication rounds.

Figure 8: The convergence results of the algorithms on training neural networks on the federated
handwritten characters classification problem with test data set.
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