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Abstract—The protection of user privacy is an important concern in machine learning, as evidenced by the rolling out of the General

Data Protection Regulation (GDPR) in the European Union (EU) in May 2018. The GDPR is designed to give users more control over

their personal data, which motivates us to explore machine learning frameworks for data sharing that do not violate user privacy. To

meet this goal, in this paper, we propose a novel lossless privacy-preserving tree-boosting system known as SecureBoost in the setting

of federated learning. SecureBoost first conducts entity alignment under a privacy-preserving protocol and then constructs boosting

trees across multiple parties with a carefully designed encryption strategy. This federated learning system allows the learning process

to be jointly conducted over multiple parties with common user samples but different feature sets, which corresponds to a vertically

partitioned data set. An advantage of SecureBoost is that it provides the same level of accuracy as the non-privacy-preserving

approach while at the same time, reveals no information of each private data provider. We show that the SecureBoost framework is as

accurate as other non-federated gradient tree-boosting algorithms that require centralized data and thus it is highly scalable and

practical for industrial applications such as credit risk analysis. To this end, we discuss information leakage during the protocol

execution and propose ways to provably reduce it.

Index Terms—Federated Learning, Privacy, Security, Decision Tree

✦

1 INTRODUCTION

The modern society is increasingly concerned with the unlawful

use and exploitation of personal data. At the individual level,

improper use of personal data may cause potential risk to user

privacy. At the enterprise level, data leakage may have grave

consequences on commercial interests. Actions are being taken by

different societies. For example, the European Union has enacted a

law known as General Data Protection Regulation (GDPR). GDPR

is designed to give users more control over their personal data [1],

[2], [3], [4]. Many enterprise that rely heavily on machine learning

are beginning to make sweeping changes as a consequence.

Despite difficulty in meeting the goal of user privacy pro-

tection, the need for different organizations to collaborate while

building machine learning models still stays strong. In reality,

many data owners do not have sufficient amount of data to build

high-quality models. For example, retail companies have users’

purchases and transaction data, which are highly useful if provided

to banks for credit rating applications. Likewise, mobile phone

companies have users’ usage data, but each company may only

have a small amount of users which are not enough to train

high-quality user preference models. Such companies have strong

motivation to collaboratively exploit the joint data value.

So far, it is still a challenge to allow different data owners to

collaboratively build high-quality machine learning models while

at the same time protecting user data privacy and confidentiality.

In the past, several attempts have been made to address the
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user privacy issue in machine learning [5], [6]. For example,

Apple proposed to use differential privacy (DP) [7], [8] to address

the privacy preservation issue. The basic idea of DP is to add

properly calibrated noise to data to disambiguate the identity of

any individuals when data is being exchanged and analyzed by

a third party. However, DP only prevents user-data leakage to

a certain degree and cannot completely rule out the identity of

an individual. In addition, data exchange under DP still requires

that data change hands between organizations, which may not be

allowed by strict laws like GDPR. Furthermore, the DP method

is lossy in machine learning in that models built after noise is

injected may perform unsatisfactorily in prediction accuracy.

More recently, Google introduced a federated learning (FL)

framework [9] and deployed it on Android cloud. The basic idea

is to allow individual clients to upload only model updates but not

raw data to a central server where the models are aggregated. A

secure aggregation protocol was further introduced [10] to ensure

the model parameters do not leak user information to the server.

This framework is also referred to as horizontal FL [11] or data-

partition FL where each partition corresponds to a subset of data

samples collected from one or multiple users.

In this paper, we consider another setting of multiple par-

ties collaboratively build their machine learning models while

protecting user privacy and data confidentiality. Our setting is

shown in Figure 2 and is typically referred as vertical FL [11]

because data are partitioned by features among different parties.

This setting has a wide range of real-world applications. For

example, financial institutes can leverage alternative data from a

third party to enhance users’ and small and medium enterprises’

credit ratings [12]. Patents’ record from multiple hospitals can

be used together for diagnoses [13], [14]. We can regard the data

located at different parties as a subsection of a virtual big data

table obtained by taking the union of all data at different parties.

http://arxiv.org/abs/1901.08755v3
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Fig. 1: Illustration of the proposed SecureBoost framework
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Fig. 2: Vertically partitioned data set

Then the data at each party has the following property:

1) The big data table is vertically split, such that the data are

split in the feature dimension among parties;

2) Only one data provider has the label information;

3) Parties share a common set of users.

Our goal is then to allow parties to build a prediction model jointly

while protecting all parties from leaking data information to other

parties. In contrast with most existing work on privacy-preserving

data mining and machine learning, the complexity in our setting is

significantly increased. Unlike sample-partitioned/horizontal FL,

the vertical FL setting requires a more complex mechanism to

decompose the loss function at each party [5], [15], [16]. In

addition, since only one data provider owns the label information,

we need to propose a secure protocol to guide the learning process

instead of sharing label information explicitly among all parties.

Finally, data confidentiality and privacy concerns prevent parties

from exposing their own users. Hence, entity alignment should

also be conducted in a sufficiently secure manner.

Tree boosting is a highly effective and widely used machine

learning method, which excels in many machine learning tasks

due to its high efficiency as well as strong interpretability. For

example, XGBoost [17] has been widely used in various appli-

cations including credit risk analysis and user behavior studies.

In this paper, we propose a novel end-to-end privacy-preserving

tree-boosting algorithm and framework known as SecureBoost to

enable machine learning in a federated setting. Secureboost has

been implemented in an open-sourced FL project, FATE1 to enable

industrial applications. Our federated learning framework operates

in two steps. First, we find the common users among the parties

1. https://github.com/FederatedAI/FATE

under a privacy-preserving constraint. Then, we collaboratively

learn a shared classification or regression model without leaking

any user information to each other. We summarize our main

contributions as follows:

• We formally define a novel problem of privacy-preserving

machine learning over vertically partitioned data in the

setting of federated learning.

• We present an approach to train a high-quality tree boost-

ing model collaboratively while keeping the training data

local over multiple parties. Our protocol does not need the

participation of a trusted third party.

• Finally and importantly, we prove that our approach is

lossless in the sense that it is as accurate as any centralized

non-privacy-preserving methods that bring all data to a

central location.

• In addition, along with a proof of security, we discuss

what would be required to make the protocols completely

secure.

2 PRELIMINARIES AND RELATED WORK

To protect the privacy of the data used for learning a model,

the authors in [18] proposed to take advantage of differential

privacy (DP) for learning a deep learning model. Recently, Google

introduced a federated learning framework to prevent the data

from being transmitted by bringing the model training to each

mobile terminal [9], [10], [19]. Its basic idea is that each local

mobile terminal trains the local model using its local data with

the same model architecture. The global model can simply be

updated by averaging all the local models. Following the same

idea, several attempts have been made to reinvent different ma-

chine learning models to the federated setting, including decision

tree [20], [21], linear/logistic regression [22], [23], [24] and neu-

ral network [25], [26].

All the above methods are designed for horizontally parti-

tioned data. Unlike sample-partitioned/horizontal FL, the vertical

FL setting requires a more complex mechanism to decompose

the loss function at each party. The concept of vertical FL is

first proposed in [5], [11] and protocols are proposed for linear

models [5], [13] and neural networks [27]. Some previous works

have been proposed for privacy-preserving decision trees over

vertically partitioned data [16], [28]. However, their proposed
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methods have to reveal class distribution over given attributes,

which will cause potential security risks. In addition, they can only

handle discrete data, which is less practical for real-life scenarios.

In contrast, our method guarantees better protection to the data and

can be easily applied to continuous data. Another work proposed

in [29] jointly performs logistic regression over the encrypted

vertically-partitioned data by approximating a non-linear logistic

loss by a Taylor expansion, which will inevitably compromise the

performance of the model. In contrast to these works, we propose

a novel approach that is lossless in nature.

3 PROBLEM STATEMENT

Let
{

Xk ∈ R
nk×dk

}m

k=1
be the data matrix distributed on m pri-

vate parties with each row Xk
i∗ ∈ R

1×dk being a data instance. We

use Fk = {f1, ..., fdk
} to denote the feature set of corresponding

data matrix Xk. Two parties p and q have different sets of features,

denoted as Fp ∩ Fq = ∅, ∀p 6= q ∈ {1...m}. Different parties

may hold different sets of users as well, allowing some degree of

overlap. Only one of the parties holds the class labels y.

Definition 1. Active Party:

We define the active party as the data provider who holds

both a data matrix and the class label. Since the class label

information is indispensable for supervised learning, the active

party naturally takes the responsibility as a dominating server in

federated learning.

Definition 2. Passive Party:

We define the data provider which has only the data matrix

as a passive party. Passive parties play the role of clients in the

federated learning setting.

The problem of privacy-preserving machine learning over

vertically split data in federated learning can be stated as:

Given: a vertically partitioned data matrix
{

Xk
}m

k=1
dis-

tributed on m private parties and the class labels y distributed

on active party.

Learn: a machine learning model M without giving informa-

tion of the data matrix of any party to others in the process. The

model M is a function that has a projection Mi at each party i,
such that Mi takes input of its own features Xi.

Lossless Constraint: We require that the model M is lossless,

which means that the loss of M under federated learning over the

training data is the same as the loss of M ′ when M ′ is built on

the union of all data.

4 FEDERATED LEARNING WITH SECUREBOOST

As one of the most popular machine learning algorithms, the

gradient-tree boosting excels in many machine learning tasks, such

as fraud detection, feature selection and product recommenda-

tion. In this section, we propose a novel gradient-tree boosting

algorithm called SecureBoost in the federated learning setting.

It consists of two major steps. First, it aligns the data under

the privacy constraint. Second, it collaboratively learns a shared

gradient-tree boosting model while keeping all the training data

secret over multiple private parties. We explain each step below.

Our first goal is to find a common set of data samples at all

participating parties so as to build a joint model M . When the

data is vertically partitioned among parties, different parties hold

different but partially overlapping users, which can be identified

using their IDs. The problem is how to find the common data

samples across the parties without revealing the non-shared parts.

To achieve this goal, we align the data samples under a privacy-

preserving protocol for inter-database intersections [30].

After aligning the data across different parties under the pri-

vacy constraint, we now consider the problem of jointly building

tree ensemble models over multiple parties without violating

privacy. Before further discussing the detail of the algorithm,

we first introduce the general framework of federated learning.

In federated learning, a typical iteration consists of four steps.

First, each client downloads the current global model from server.

Second, each client computes an updated model based on its

local data and the current global model, which resides within the

active party. Third, each client sends the model update back to

the server under encryption. Finally, the server aggregates these

model updates and construct the updated global model.

Following the general framework of federated learning, we

see that to design a privacy-preserving tree boosting framework

in the setting of federated learning, essentially we have to answer

the following three questions: (1) How can each client (i.e., a

passive party) compute an updated model based on its local data

without reference to class label? (2) How can the server (i.e.,

the active party) aggregate all the updated model and obtain a

new global model? (3) How to share the updated global model

among all parties without leaking any information at inference

time? To answer these three questions, we start by reviewing a

tree ensemble model, XGBoost [31], in a non-federated setting.

Given a data set X ∈ R
n×d with n samples and d features,

XGBoost predicts the output by using K regression trees.

ŷi =
K
∑

k=1

fk(xi) (1)

To learn the set of regression tree models used in Eq.(1),

it greedily adds a tree ft at the t-th iteration to minimize the

following loss.

L(t) ≃
n
∑

i=1

[

l
(

yi, ŷi
(t−1)

)

+ gift (xi) +
1

2
hif

2
t (xi)

]

+Ω(ft)

(2)

where Ω(ft) = γT + 1
2λ ‖w‖

2
, gi = ∂ŷ(t−1) l(yi, ŷ

(t−1)) and

hi = ∂2
ŷ(t−1) l(yi, ŷ

(t−1)).
When constructing the regression tree in the t-th iteration,

it starts from the tree with depth of 0 and add a split for each

leaf node until reaching the maximum depth. In particular, it

maximizes the following equation to determine the best split,

where IL and IR are the instance spaces of left and right tree

nodes after the split.

Lsp =
1

2

[

(
∑

i∈IL
gi
)2

∑

i∈IL
hi + λ

+

(
∑

i∈IR
gi
)2

∑

i∈IR
hi + λ

−

(
∑

i∈I gi
)2

∑

i∈I hi + λ

]

−γ

(3)

After it obtains an optimal tree structure, the optimal weight

w∗
j of leaf j can be computed by the following equation, where Ij

is the instance space of leaf j.

w∗
j = −

∑

i∈Ij
gi

∑

i∈Ij
hi + λ

(4)

From the above review, we make following observations:
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Algorithm 1 Aggregate Encrypted Gradient Statistics

Input: I , instance space of current node

Input: d, feature dimension

Input: {〈gi〉 , 〈hi〉}i∈I

Output: G ∈ R
d×l, H ∈ R

d×l

1: for k = 0→ d do

2: Propose Sk = {sk1, sk2, ..., skl} by percentiles on fea-

ture k
3: end for

4: for k = 0→ d do

5: Gkv =
∑

i∈{i|sk,v≥xi,k>sk,v−1}
〈gi〉

6: Hkv =
∑

i∈{i|sk,v≥xi,k>sk,v−1}
〈hi〉

7: end for

(1) The evaluation of split candidates and the calculation of

the optimal weight of leaf only depends on the gi and hi, which

makes it easily adapted to the setting of federated learning.

(2) The class label can be inferred from gi and hi. For instance,

when we take the square loss as the loss function, we have gi =

ŷ
(t−1)
i − yi.

With the above observations, we now introduce our federated

gradient tree boosting algorithm. Following observation (1), we

can see that passive parties can determine their locally optimal

split with only its local data and gi,hi, which motivates us to

follow such method to decompose learning task at each party.

However, according to observation (2), gi and hi should be re-

garded as sensitive data, since they are able to disclose class label

information to passive parties. Therefore, in order to keep gi and

hi confidential, the active party is required to encrypt gi and hi

before sending them to passive parties. The remaining challenge

is how to determine the locally optimal split with encrypted gi and

hi for each passive party.

According to Eq.(3), the optimal split can be found if gl =
∑

i∈IL
gi and hl =

∑

i∈IL
hi are calculated for every possible

split. So next, we show how to obtain gl and hl with encrypted gi
and hi using additive homomorphic encryption scheme [32]. The

Paillier encryption scheme is taken as our encryption scheme.

Denoting the encryption of a number u under the Paillier cryp-

tosystem as 〈u〉, the main property of the Paillier cryptosystem

ensures that for arbitrary numbers u and v, we have 〈u〉 . 〈v〉 =
〈u+ v〉. Therefore, 〈hl〉 =

∏

i∈IL
〈hi〉 and 〈gl〉 =

∏

i∈IL
〈gi〉.

Consequently, the best split can be found in the following way.

First, each passive party computes 〈gl〉 and 〈hl〉 for all possible

splits locally, which are then sent back to the active party. The

active party deciphers all 〈gl〉 and 〈hl〉 and calculates the global

optimal split according to Eq.(3). We adopt the approximation

scheme used by [31], so as to alleviate the need of enumerating all

possible split candidates and communicating their 〈gi〉 and 〈hi〉.
The details of our secure gradient aggregation algorithm are shown

in Algorithm 1.

Following the observation (1), the split finding algorithm re-

mains largely the same as XGBoost except for minor adjustments

to fit the federated learning framework. Due to separation in

features, SecureBoost requires different parties to store certain

information for each split, so as to perform prediction for new

samples. Passive parties should keep a lookup table as shown in

Figure 3. It contains split thresholds [feature id k, threshold value

v] and a unique record id r used to index the table, in order

to look up split conditions during inference. In the meantime,

Algorithm 2 Split Finding

Input: I, instance space of current node

Input:
{

Gi,Hi
}m

i=1
, aggregated encrypted gradient statistics

from m parties

Output: Partition current instance space according to the selected

attribute’s value

1: /*Conduct on Active Party*/

2: g ←
∑

i∈I gi, h←
∑

i∈I hi

3: for i = 0 to m do

4: for k = 0 to di do

5: gl ← 0, hl ← 0
6: //enumerate all threshold value

7: for v = 0 to lk do

8: get decrypted values D(Gi
kv) and D(Hi

kv)
9: gl ← gl +D(Gi

kv), hl ← hl +D(Hi
kv)

10: gr ← g − gl, hr ← h− hl

11: score← max(score,
g2
l

hl+λ
+

g2
r

hr+λ
− g2

h+λ
)

12: end for

13: end for

14: end for

15: Return kopt and vopt to the passive party iopt when we obtain

the max score.

16: /*Conduct on Passive Party iopt*/

17: Determine the selected attribute’s value according to kopt and

vopt and partition current instance space.

18: Record the selected attribute’s value and return [record id, IL]

back to the active party.

19: /*Conduct on Active Party*/

20: Split current node according to IL and associate current node

with [party id, record id].

because the active party does not have features located in passive

parties, for the active party to know which passive party to

deliver an instance to, as well as instructing the passive party

which split condition to use at inference time, it associates every

tree node with a pair (party id i, record id r). Specific details

about the split finding algorithm for SecureBoost is summarized

in Algorithm 2. The problem remaining is the computation of

optimal leaf weights. According to Equation 4, the optimal weight

of leaf j only depends on
∑

i∈Ij
gi and

∑

i∈Ij
hi. Consequently,

it follows similar procedures as split finding. When a leaf node is

reached, the passive party sends 〈
∑

i∈Ij
gi〉 and 〈

∑

i∈Ij
hi〉 to the

active party, which are then deciphered to compute corresponding

weights through Equation 4.

5 FEDERATED INFERENCE

In this section, we describe how the learned model (distributed

among parties) can be used to classify a new instance even

though the features of the instance to be classified are private

and distributed among parties. Since each party knows its own

features but nothing of the others, we need a secure distributed

inference protocol to control passes from one party to another,

based on the decision made. To illustrate the inference process,

we consider a system with three parties as depicted in Figure 3.

Specifically, party 1 is the active party, which collects information

including user’s monthly bill payment, education, as well as the

label, whether the user X made the payment on time. Party 2 and

party 3 are passive parties, holding features age, gender, marriage

status and amount of given credit respectively. Suppose we wish to
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Example BIll Payment Education 

X1 3102 2 

X2 17250 3 

X3 14027 2 

X4 6787 1 

X5 280 1 

Party 1 (Passive Party) 

Example Age Gender Marriage Label 

X1 20 1 0 0 

X2 30 1 1 1 

X3 35 0 1 1 

X4 48 0 1 2 

X5 10 1 0 3 

Party 2 (Active Party) 

Example Amount of given credit 

X1 5000 

X2 300000 

X3 250000 

X4 300000 

X5 200 

Party 3 (Passive Party) 

w1 w3 w4

Party ID:2

Record ID:1

Party ID:3

Record ID:1

Party ID: 1

Record ID: 1

Root 

Node 1 Node 2 

Example BIll Payment Education 

X6 4367 2 

Example Age Gender Marriage Label 

X6 28 1 0 0 

Example Amount of given credit 

X6 5500 

Training Set 

Predict 

{X5} {X1} {X2, X3} {X4}

w2

input 

 Party 1: 4367<5000 

 Party 3 query for ‘1' 

from its lookup table 

 Party 3: 5500>800 

 Party 1 query for ‘1' 

from its lookup table 
Lookup table 

Party 1: 

Party 2: 

Party 3: 

Record ID Feature threshold value 

1 Bill Payment  5000 

Record ID Feature threshold value 

1 Age 40 

Record ID Feature threshold value 

1 Amount of given credit 800 

Fig. 3: An illustration of Federated Inference

predict whether a user X6 would make payment on time, then all

sites would have to collaborate to make the prediction. The whole

process is coordinated by the active party. Starting from the root,

by referring to the record [party id:1, record id:1], the active party

knows party 1 holds the root node, thereby requiring party 1 to

retrieve the corresponding attribute, Bill Payment, from its lookup

table based on the record id 1. Since the classifying attribute is bill

payment and party 1 knows the bill payment for user X6 is 4367,

which is less than the threshold 5000, it makes the decision that

it should move down to its left child, node 1. Then, active party

refers to the record [party id:3, record id:1] associated with node 1
and requires party 3 to conduct the same operations. This process

continues until a leaf is reached.

6 THEORETICAL ANALYSIS FOR LOSSLESS PROP-

ERTY

Theorem 1. SecureBoost is lossless, i.e. SecureBoost model M
and XGBoost model M ′ would behave identically provided that

the models M and M ′ are identically initialized and hyper-

parameterized.

Proof. According to Eq.(3), gl and hl are the only informa-

tion needed for the calculation of the best split, which can be

obtained with encrypted gi and hi using Paillier cryptosystem

in SecureBoost. In the Paillier cryptosystem, the encryption of

a message m is 〈m〉 = gmrn mod n2, for some random

r ∈ {0, . . . , n−1}. Given the definition of encrypted message, we

have 〈m1〉 . 〈m2〉 = 〈m1 +m2〉 for arbitrary message m1 and

m2 under Paillier cryptosystem, which can be proved as follows:

〈m1〉 . 〈m2〉 = (gm1rc1)(g
m2rc2) mod n

= gm1+m2(r1r2)
c mod n

= 〈m1 +m2〉

(5)

Therefore, we have 〈hl〉 =
∏

i∈IL
〈hi〉 and 〈gl〉 =

∏

i∈IL
〈gi〉. Provided that with the same initialization, an instance

i will have the same value of gi and hi under either setting.

Thus, model M and M ′ can always achieve the same best split

throughout the construction of the tree and result in identical M
and M ′, which ensures the property of lossless.

7 SECURITY DISCUSSION

SecureBoost avoids revealing data records held by each of the

parties to others during training and inference thus protecting the

privacy of individual parties’ data. However, we stress that there

is some leakage that can be inferred during the protocol execution

which is quite different for passive vs. active parties.

The active party is in an advantageous position with Secure-

Boost as it learns the instance space for each split and which party

is responsible for the decision at each node. Also, it learns all the

possible values of gl, gr and hl, hr, during learning. The former

seems unavoidable in this setting, unless one is willing to severely

increase the overhead during the inference phase. However, the

latter can be avoided using secure multi-party computation tech-

niques for comparison of encrypted values (e.g., [33], [34]). In

this way, the active party learns only the optimal gl, gr, hl, hr per

party; on the other hand, this significantly affects the efficiency

during learning.

Note that the instances that are associated with the same leaf

strongly indicates they belong to the same class. We denote the

proportion of samples which belong to the majority class as leaf

purity. The information leakage with respect to passive parties

is directly related with leaf purity of the first tree of SecureBoost.

Moreover, the first tree’s leaf purity can be inferred from the

weight of the leaves.

Theorem 2. Given a learned SecureBoost model, its first tree’s

leaf purity can be inferred from the weight of the leaves.

Proof. The loss function for binary classification problem is given

as follows.

L = yilog(1 + e−ŷi) + (1− yi)log(1 + eŷi) (6)

Based on the loss function, we have gi = ŷi
(0)− yi and hi =

ŷi
(0)∗(1−ŷi

(0)) during the construction of the decision tree at first

iteration. Specifically, ŷi
(0)

is given as initialized value. Suppose
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we initialize all ŷi
(0)

as a where 0 < a < 1. According to

Eq.(4), for the instances associated with the specific leaf j, ŷi
(1) =

S(w∗
j ) = S(−

∑
i∈Ij

gi
∑

i∈Ij
hi+λ

) where S(x) is the sigmoid function.

Suppose the number of instances associated with the leaf j is nj

and the percentage of positive samples is θj . When nj is relatively

big, we can ignore λ in −

∑
i∈Ij

gi
∑

i∈Ij
hi+λ

and rewrite the weight

of leaf j as w∗
j = −

∑
i∈Ij

gi
∑

i∈Ij
hi

= − θj∗n∗(a−1)+(1−θj)∗n∗a
n∗a∗(1−a) =

−
θj∗n∗(a−1)+(1−θj)∗n∗a

n∗a∗(1−a) =
a−θj
a(a−1) . By reformulating the equa-

tion, we have θj = a − a(a − 1)w∗
j . θj depends on a and w∗

j

and a is given as initialization. Thus, w∗
j is the key to determine

θj . Note that θj can be used to represent the leaf purify of leaf j
(i.e., purify of leaf j can be formally written as max(θj , 1− θj),
leaf purity of the first tree can be inferred from the weight of the

leaves (w∗
j ) given a learned SecureBoost model.

According to Theorem 2, given a SecureBoost model, the

weight of the leaves of its first tree can reveal sensitive informa-

tion. In order to reduce information leakage with respect to passive

parties, we opt to store decision tree leaves at the active party and

propose a modified version of our framework, called Reduced-

Leakage SecureBoost (RL-SecureBoost). With RL-SecureBoost,

the active party learns the first tree independently based only on its

own features which fully protects the instance space of its leaves.

Hence, all the information that passive parties learn is based on

residuals. Although the residuals may also reveal information, we

prove that as the purity in the first tree increases, this residual

information decreased.

Theorem 3. As the purity in the first tree increases, the residual

information decreased.

Proof. As mentioned before, for binary classification problem, we

have gi = ŷi
(t−1) − yi and hi = ŷi

(t−1) ∗ (1 − ŷi
(t−1)), where

gi ∈ [−1, 1]. Hence,

{

hi = gi(1 − gi), if yi = 0
hi = −gi(gi + 1), if yi = 1

(7)

When we construct the decision tree at the t-th iteration with

k leaves to fit the residuals of the previous tree, in essential, we

split the data into k clusters to minimize the following loss.

L =−
k
∑

j=1

(
∑

i∈Ij
gi)

2

∑

i∈Ij
hi

=−
k
∑

j=1

(
∑

i∈Ij
gi)

2

∑

i∈IN
j
gi(1− gi) +

∑

i∈IP
j
−gi(1 + gi)

(8)

We know ŷi
(t−1) ∈ [0, 1] and gi = ŷi

(t−1) − yi. Thus, we

have gi ∈ [−1, 0] for positive samples and gi ∈ [0, 1] for negative

samples. Taking the range of gi into consideration, we can rewrite

the above equation as follows.

k
∑

j=1

(
∑

i∈IN
j
|gi| −

∑

i∈IP
j
|gi|)

2

∑

i∈IN
j
|gi|(|gi| − 1) +

∑

i∈IP
j
|gi|(|gi| − 1)

(9)

Where INj and IPj denote the set of negative samples and

positive samples associated with leaf j respectively. We denote the

expectation of |gi| for positive samples as µp and the expectation

of |gi| for negative samples as µn. When we have a large amount

of samples but small number of leave nodes k, we can use the

following equation to approximates Eq.( 9).

k
∑

j=1

(nn
j µn − np

jµp)
2

nn
j µn(µn − 1) + np

jµp(µp − 1)
(10)

Where nn
j and np

j represent the number of negative samples

and positive samples associated with leaf j. Since µn ∈ [0, 1]
and µn ∈ [0, 1], we know the numerator has to be positive and the

denominator has to be negative. Thus, the whole equation has to be

negative. To minimize Eq.(10) is equal to maximizing the numera-

tor while minimizing the denominator. Note that the denominator

is
∑

x2 and the numerator is (
∑

x)2 where x ∈ [0, 1] . The

equation is dominated by numerator. Thereby, minimizing Eq.( 10)

can be regarded as maximizing the numerator (nn
j µn − np

jµp)
2.

Ideally, we require nn
j = np

j in order to prevent label information

from divulging. When |µn − µp| is bigger, more possible we can

achieve the goal. And we know |gi| = |ŷi
(t−1) − yi| = ŷi

(t−1)

for negative samples and |gi| = |ŷi
(t−1) − yi| = 1− ŷi

(t−1)
for

positive samples. Thereby, µn = 1
Nn

∑k
j=1(1−θj)nj ŷi

(t−1)
and

µp = 1
Np

∑k
j=1 θjnj(1 − ŷi

(t−1)). |µn − µp| can be calculated

as follows.

|µn − µp|

=|
1

Nn

k
∑

j=1

(1 − θj)nj ŷi
(t−1) −

1

Np

k
∑

j=1

θjnj(1− ŷi
(t−1))|

(11)

Where Nn and Np correspond to the number of negative

samples and positive samples in total. θj is the percentage of

positive samples associated with leave j for decision tree at

(t− 1)-th iteration (previous decision tree). nj denote the number

of instances associated with leave j for previous decision tree.

ŷi
(t−1) = S(wj) where wj represents the weight of j-th leave

of previous decision tree. When the positive samples and negative

samples are balanced, Nn = Np, we have

|µn − µp|

=
1

Nn

|
k
∑

j=1

((1− θj)njS(wj)− θjnj(1 − S(wj))|

=
1

Nn

k
∑

j=1

nj|(S(wj)− θj)|

=
1

Nn

k
∑

j=1

nj|(S(
a− θj
a(a− 1)

)− θj)|

(12)

As observed from Eq.( 12), it achieves the minimum value

when S(
a−θj
a(a−1)) = a. By solving the equation, we have the

optimal solution of θj as θj∗ = a(1+(1−a) ln( a
1−a

))). In order

to achieve bigger µn−µp, we want the deviation from θj to θj∗ to

be as big as possible. When we have proper initialization of a, for

instance a = 0.5, θj∗ = 0.5. In this case, maximizing |θj − θj ∗ |
is the same as maximizing max(θj , 1 − θj), which exactly is the

leaf purity. Therefore, we have proved that high leaf purity will

guarantee big difference between µn and µp, which finally results

in less information leakage. We complete our proof.
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Fig. 4: Loss convergence

TABLE 1: First Tree vs. Second Tree in terms of Leaf Purity

Mean Purity Credit 1 Credit 2

1st Tree 0.8058 0.7159
2rd Tree 0.66663 0.638

Given Theorem 3, we prove that RL-SecureBoost is secure as

long as its first tree learns enough information to mask the actual

label with residuals. Moreover, as we experimentally demonstrate

in Section 8, RL-SecureBoost performs identically as SecureBoost

in terms of prediction accuracy.

8 EXPERIMENTS

We conduct experiments on two public datasets.

Credit 12: It involves the problem of classifying whether a

user would suffer from serious financial problems. It contains a

total of 150000 instances and 10 attributes.

Credit 23: It is also a credit scoring dataset, correlated to the

task of predicting whether a user would make payment on time. It

consist of 30000 instances and 25 attributes in all.

In our experiment, we use 2/3 of each dataset for training

and the remaining for testing. We split the data vertically into

two halves and distribute them to two parties. To fairly compare

different methods, we set the maximum depth of each tree as 3, the

fraction of samples used to fit individual regression trees as 0.8,

and learning rate as 0.3 for all methods. The Paillier encryption

scheme is taken as our encryption scheme with a key size of 512
bits. All experiments are conducted on a machine with 8GB RAM

and Intel Core i5-7200u CPU.

8.1 Scalability

Note that the efficiency of SecureBoost may be reflected by rate

of convergence and runtime, which may be influenced by (1)

maximum depth of individual regression trees; (2) the size of the

datasets. In this subsection, we conduct convergence analysis as

well as study the impact of all the variables on the runtime of

learning. All experiments are conducted on dataset Credit2.

First, we are interested in the convergence rate of our proposed

system. We compare the convergence behavior of SecureBoost

with non-federated tree boosting counterparts, including GBDT4

and XGBoost5. As can be observed from Figure 4, SecureBoost

shows a similar learning curve with other non-federated methods

on the training dataset and even performs slightly better than

others on the test dataset. In addition, the convergence behavior of

2. https://www.kaggle.com/c/GiveMeSomeCredit/data

3. https://www.kaggle.com/uciml/default-of-credit-card-clients-dataset

4. http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
GradientBoostingClassifier.html

5. https://github.com/dmlc/xgboost

training and test loss of SecureBoost are very much alike GBDT

and XGBoost.

Next, to investigate how maximum depth of individual trees

affects the runtime of learning, we vary the maximum depth of

individual tree among {3, 4, 5, 6, 7, 8} and report the runtime

of one boosting stage. As depicted in Figure 5 (a), the runtime

increases almost linearly with the maximum depth of individual

trees, which indicates that we can train deep trees with relatively

little additional time, which is very appealing in practice, espe-

cially in scenarios like big data.

Finally we study the impact of data size on the runtime of our

proposed system. We augment the feature sets by feature products.

We fix the maximum depth of individual regression trees to 3 and

vary the feature number in {50, 500, 1000, 5000} and the sample

number in {5000, 10000, 30000}. We compare the runtime of one

boosting stage to investigate how each variant affects the efficiency

of the algorithm. We make similar observations on both Figure 5

(b) and Figure 5 (c), which imply that sample and feature numbers

contribute equally to running time. In addition, we can see that our

proposed framework scales well even with relatively big data.

8.2 Performance of RL-SecureBoost

To investigate the performance of RL-SecureBoost in both se-

curity and prediction accuracy, we aim to answer the following

questions: (1) Does the first tree, built upon only features held

by active party, learns enough information to reduce information

leakage? (2) Does RL-SecureBoost suffer from a loss of acccuracy

compared with SecureBoost?

First, we study the performance of RL-SecureBoost in security.

Following the analysis in Section 7, we evaluate information

leakage in terms of leaf purity. Also, we know that as the leaf

purity in the first tree increases, leaked information is reduced.

Thereby, to verify the security of RL-SecureBoost, we have

to illustrate that the first tree of RL-SecureBoost perform well

enough to reduce the information leaked from the second tree. As

shown in Table 1, we compare the mean leaf purity of the first

tree with the second tree. In particular, the mean leaf purity is

the weighted average, which is calculated by
∑k

i=0
ni

n
pi. Here,

k and n represents number of leaves and number of instances in

total. pi and ni are defined as leaf purity and number of instances

associated with leaf i. According to Table 1, the mean leaf purity

decreases significantly from the first to the second tree on both

datasets, which reflects a great reduction in information leakage.

Moreover, the mean leaf purity of the second tree is just over 0.6
on both datasets, which is good enough to ensure a safe protocol.

Next, to investigate the prediction performance of RL-

SecureBoost, we compare RL-SecureBoost with SecureBoost with

respect to the the first tree’s performance and the overall perfor-

mance. We consider commonly used metrics including accuracy,

Area under ROC curve (AUC) and f1-score. The results are

presented in Table 2. As observed, RL-SecureBoost performs

equally well compared to SecureBoost in almost all cases. We

also conduct a pairwise Wilcoxon signed-rank test between RL-

SecureBoost and SecureBoost. The comparison results indicate

that RL-SecureBoost is as accurate as SecureBoost, with a signifi-

cance level of 0.05. The property of lossless is still guaranteed for

RL-SecureBoost.

9 CONCLUSION

In this paper, we proposed a lossless privacy-preserving tree

boosting algorithm, SecureBoost, to train a high-quality tree

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
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Fig. 5: Scalability Analysis of SecureBoost

TABLE 2: Classification Performance for RL-SecureBoost vs. SecureBoost

Model
Credit 1 Credit 2

ACC F1-score AUC ACC F1-score AUC

1st Tree, SecureBoost 0.9298 0.012 0.7002 0.7806 0 0.6381
1st Tree, RL-SecureBoost 0.9186 0 0.6912 0.7793 0 0.6320

Overall, SecureBoost 0.9345 0.2576 0.8461 0.8180 0.4634 0.7701
Overall, RL-SecureBoost 0.9331 0.2549 0.8423 0.8179 0.4650 0.7682

boosting model with private data split across multiple parties. We

theoretically prove that our proposed framework is as accurate

as non-federated gradient tree boosting counterparts. In addition,

we analyze information leakage during the protocol execution and

propose provable ways to reduce it.
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