
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/349547320

DeepThermal: Combustion Optimization for Thermal Power Generating Units

Using Offline Reinforcement Learning

Preprint · February 2021

CITATIONS

0
READS

150

7 authors, including:

Some of the authors of this publication are also working on these related projects:

Transportation View project

Xianyuan Zhan

Tsinghua University

39 PUBLICATIONS 951 CITATIONS

SEE PROFILE

All content following this page was uploaded by Xianyuan Zhan on 27 February 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/349547320_DeepThermal_Combustion_Optimization_for_Thermal_Power_Generating_Units_Using_Offline_Reinforcement_Learning?enrichId=rgreq-d4bcc8ed04cd4134915a5310e1a47b42-XXX&enrichSource=Y292ZXJQYWdlOzM0OTU0NzMyMDtBUzo5OTU2ODQ2NTYzNDkxODVAMTYxNDQwMTEyOTIyOQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/349547320_DeepThermal_Combustion_Optimization_for_Thermal_Power_Generating_Units_Using_Offline_Reinforcement_Learning?enrichId=rgreq-d4bcc8ed04cd4134915a5310e1a47b42-XXX&enrichSource=Y292ZXJQYWdlOzM0OTU0NzMyMDtBUzo5OTU2ODQ2NTYzNDkxODVAMTYxNDQwMTEyOTIyOQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Transportation-9?enrichId=rgreq-d4bcc8ed04cd4134915a5310e1a47b42-XXX&enrichSource=Y292ZXJQYWdlOzM0OTU0NzMyMDtBUzo5OTU2ODQ2NTYzNDkxODVAMTYxNDQwMTEyOTIyOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-d4bcc8ed04cd4134915a5310e1a47b42-XXX&enrichSource=Y292ZXJQYWdlOzM0OTU0NzMyMDtBUzo5OTU2ODQ2NTYzNDkxODVAMTYxNDQwMTEyOTIyOQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xianyuan-Zhan?enrichId=rgreq-d4bcc8ed04cd4134915a5310e1a47b42-XXX&enrichSource=Y292ZXJQYWdlOzM0OTU0NzMyMDtBUzo5OTU2ODQ2NTYzNDkxODVAMTYxNDQwMTEyOTIyOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xianyuan-Zhan?enrichId=rgreq-d4bcc8ed04cd4134915a5310e1a47b42-XXX&enrichSource=Y292ZXJQYWdlOzM0OTU0NzMyMDtBUzo5OTU2ODQ2NTYzNDkxODVAMTYxNDQwMTEyOTIyOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Tsinghua-University?enrichId=rgreq-d4bcc8ed04cd4134915a5310e1a47b42-XXX&enrichSource=Y292ZXJQYWdlOzM0OTU0NzMyMDtBUzo5OTU2ODQ2NTYzNDkxODVAMTYxNDQwMTEyOTIyOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xianyuan-Zhan?enrichId=rgreq-d4bcc8ed04cd4134915a5310e1a47b42-XXX&enrichSource=Y292ZXJQYWdlOzM0OTU0NzMyMDtBUzo5OTU2ODQ2NTYzNDkxODVAMTYxNDQwMTEyOTIyOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xianyuan-Zhan?enrichId=rgreq-d4bcc8ed04cd4134915a5310e1a47b42-XXX&enrichSource=Y292ZXJQYWdlOzM0OTU0NzMyMDtBUzo5OTU2ODQ2NTYzNDkxODVAMTYxNDQwMTEyOTIyOQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

DeepThermal: Combustion Optimization for
Thermal Power Generating Units Using Offline

Reinforcement Learning

Xianyuan Zhan∗1,2, Haoran Xu∗1,3, Yue Zhang∗1,
Yusen Huo1, Xiangyu Zhu1, Honglei Yin1, Yu Zheng1,2,3

1JD Intelligent Cities Research, China
2JD iCity, JD Technology, Beijing, China

3Xidian University, China
{zhanxianyuan,ryanxhr,zhangyuezjx,yinhonglei93}@gmail.com

{zackxiangyu,msyuzheng}@outlook.com
{huoyusen1}@126.com

Abstract

Thermal power generation plays a dominant role in the world’s electricity supply.
It consumes large amounts of coal worldwide, and causes serious air pollution.
Optimizing the combustion efficiency of a thermal power generating unit (TPGU)
is a highly challenging and critical task in the energy industry. We develop a
new data-driven AI system, namely DeepThermal, to optimize the combustion
control strategy for TPGUs. At its core, is a new model-based offline reinforce-
ment learning (RL) framework, called MORE, which leverages logged historical
operational data of a TPGU to solve a highly complex constrained Markov decision
process problem via purely offline training. MORE aims at simultaneously im-
proving the long-term reward (increase combustion efficiency and reduce pollutant
emission) and controlling operational risks (safety constraints satisfaction). In
DeepThermal, we first learn a data-driven combustion process simulator from the
offline dataset. The RL agent of MORE is then trained by combining real historical
data as well as carefully filtered and processed simulation data through a novel
restrictive exploration scheme. DeepThermal has been successfully deployed in
four large coal-fired thermal power plants in China. Real-world experiments show
that DeepThermal effectively improves the combustion efficiency of a TPGU. We
also report and demonstrate the superior performance of MORE by comparing with
the state-of-the-art algorithms on the standard offline RL benchmarks. To the best
knowledge of the authors, DeepThermal is the first AI application that has been
used to solve real-world complex mission-critical control tasks using the offline
RL approach.

1 Introduction

Thermal power generation forms the backbone of the world’s electricity supply and plays a dominant
role in the energy structure of many countries. For example, there are more than 2,000 coal-fired
thermal power plants in China, contributing to more than 60% of all electricity generated in the
country. Every year, thermal power plants across the world consume an enormous amount of non-
renewable coal and cause serious air pollution issues. How to improve the combustion efficiency
of a thermal power generating unit (TPGU) has been a critical problem for the energy industry for
decades. Solving this problem has huge economic and environmental impacts. For instance, by only
improving 0.5% of combustion efficiency of a 600 megawatt (MW) TPGU, a power plant can save
more than 4000 tons of coal and reduce hundreds of tons of emissions (e.g. carbon dioxides CO2 and
nitrogen oxides NOx) a year.

∗Equal contribution.

ar
X

iv
:2

10
2.

11
49

2v
2

 [
cs

.L
G

]
 2

4
Fe

b
20

21

However, optimizing the combustion efficiency of TPGUs is an extremely challenging task. The
difficulties arise from several aspects. First, TPGUs are highly complex and large systems, which
contain lots of equipment and complicated operation mechanisms. A typical 600MW TPGU has more
than 10,000 sensors. The combustion process alone involves 70∼100 continuous control variables,
which induce extremely large action space for control optimization. The involvement of the large
number of safety constraints and domain knowledge further exacerbates the difficulty of the task.
Lastly, it is desirable to achieve long-term optimization with multiple objectives, such as increasing
combustion efficiency while reducing NOx emission. All these factors and requirements result in
an extremely difficult problem that has not been well solved after decades of effort. Currently, most
coal-fired thermal power plants still use semi-automatic control systems, and their control heavily
depends on the experience and expertise of human operators.

Conventional industrial control optimization approaches, such as the widely used PID (proportional-
integral-derivative) controller (Astrom and Hagglund, 2006) and model predictive control (MPC)
algorithms (Garcia et al., 1989), neither have sufficient expressive power nor scale with the increase
of problem size. When facing large and complex systems, these methods will have unavoidable
modeling complexity and cost an extremely large amount of time to solve for optimal solutions.
Hence most existing combustion optimization approaches decompose the TPGU into individual small
sub-systems that only involve a limited amount of state and control variables (Kalogirou, 2003; Lee
et al., 2007; Ma and Lee, 2011; Liu and Bansal, 2014). These treatments oversimplify the system,
which is insufficient for fully modeling the complex combustion process in a TPGU.

The recent advances of deep reinforcement learning (RL) provide another promising direction.
Deep RL leverages expressive function approximators (deep neural networks) and has achieved
great success in solving complex tasks such as games (Mnih et al., 2013; Silver et al., 2017) and
robotic control (Levine et al., 2016). However, all these achievements are restricted to the online
RL domain, where agents are allowed to have unrestricted interaction with real systems or perfect
simulation environments. In real-world industrial control scenarios, especially for a mission-critical
task like control optimization for TPGUs, an algorithm may never get the chance to interact with
the system at the training stage. A problematic control policy can lead to disastrous consequences to
system operation. Furthermore, most real-world industrial systems are overly complex or partially
monitored by sensors, which makes it impossible to build a high-fidelity simulation environment
for training online RL models. Fortunately, industrial systems like TPGUs have long-term storage
of the operational data collected from sensors, resulting in large logged datasets. So our problem
becomes, how to learn an optimized control strategy for TPGUs using RL with only logged dataset,
simultaneously considering all the safety constraints, but without interacting with the real system.

The recently emerged offline RL provides an ideal framework for our problem. Offline RL focuses on
training RL policies from offline, static datasets without environment interaction. The main difficulty
of offline RL tasks is the distributional shift issue (Kumar et al., 2019), which occurs when the learned
policies make counterfactual queries on unknown out-of-distribution (OOD) data samples, causing
non-rectifiable exploitation error during training. The key insight of recent offline RL algorithms
(Fujimoto et al., 2019; Kumar et al., 2019; Wu et al., 2019; Yu et al., 2020) is to restrict policy
learning stay “close” to the data distribution, which avoids the potential extrapolation error when
evaluating unknown OOD samples.

In this work, we develop a new data-driven AI system, namely DeepThermal (Chinese name: 深燧),
to optimize the combustion efficiency of real-world TPGUs. DeepThermal constructs a data-driven
combustion process simulator to facilitate RL training. The core of DeepThermal is a new model-
based offline RL framework, called MORE, which is capable of leveraging both logged historical
datasets and an imperfect simulator to learn RL policies under constraints. DeepThermal has already
been successfully deployed in four large coal-fired thermal power plants in China. Real-world
experiments show that the optimized control strategies provided by DeepThermal effectively improve
the combustion efficiency of TPGUs. Extensive comparative experiments on standard offline RL
benchmarks also demonstrate the superior performance of MORE against the state-of-the-art offline
RL algorithms.

The main contributions of this work are summarized as follows:

• We present the first study that applies offline RL in a large, complex real-world industrial control
scenario. A task with such scale and complexity has never been tackled in literature or practice.

2

• We develop a new AI system, named DeepThermal, to optimize the combustion efficiency of
TPGUs. The system has been successfully deployed in multiple real thermal power plants in China.

• We design a new data-driven deep-learning based combustion process simulator, with its network
design guided by prior knowledge of the actual physical dynamic processes in a TPGU.

• We propose a new model-based offline RL framework, namely MORE, which fully utilizes the
information in a real dataset and the generalizability of a potentially imperfect dynamics model to
achieve effective constrained offline RL policy learning.

• We propose several novel strategies in MORE for model-based offline RL algorithms, including
restrictive exploration and hybrid training. These strategies effectively avoid the negative impact of
simulated OOD data, while at the same time, allow sufficiently exploiting the generalizability of a
learned dynamics model.

• We conducted real-world experiments in multiple power plants in China, which validate the
effectiveness of DeepThermal. Extensive experiments on standard offline RL benchmarks also show
that MORE has superior performance compared with the state-of-the-art offline RL algorithms.

2 Overview

2.1 Operation Mechanisms of TPGUs

Thermal power generating unit converts the chemical energy of the coal to electric power. The power
generation process of a TPGU is highly complicated involving three major stages (see Figure 1).

1. Coal pulverizing stage. Coals from the coal-feeders are pulverized to fine-grained particles
by coal mills before outputting to the burner. To ensure complete combustion, many control
operations need to be properly performed, e.g. amount of coal should meet the demand load;
valves of the cold and hot air blowers (primary blowers) are adjusted to ensure suitable primary
air temperature.

2. Burning stage. Pulverized coals and air from the secondary blower are injected through 20∼48
locations of the burner (depending on the specific structure of the burner). The valves of the
secondary blower at each injection location need to be precisely controlled to allow a large fireball
to form at the center of the burner, facilitating complete combustion. Safety and regulatory issues
need also be guaranteed, such as maintaining negative internal pressure and pollutants (e.g. NOx)
generated below a certain level.

3. Steam circulation stage. The burner vaporizes water in the boiler and generates high-temperature,
high-pressure steam, which drives a steam turbine to generate electricity satisfying demand load.
The steam generated needs to satisfy multiple temperature and pressure requirements, which are
controlled by the valves of the induced draft fan, and the amount of cooling water used, etc.

Optimizing the combustion efficiency of a TPGU involves 70∼100 major continuous control variables
as well as the chemical properties of the coal, which is an extremely challenging task.

Feeders

Turbine

Induced
Dra� Fan

Parameters Pump

Water

Steam

Wind

Coal

Control Loop

Power

Pollu�on

Real
Boiler

Blowers

Coal Mills

Figure 1: Illustration of operation mechanisms of a TPGU

3

2.2 Preliminaries

We model the combustion optimization problem for TPGUs as a Constrained Markov Decision
Process (CMDP) (Altman, 1999), which augments the standard MDP with multiple safety constraints.
A CMDP is represented by a tuple (S,A, T, r, c1:m, γ), where S and A denote the state and action
spaces, T (st+1|st, at) denotes the transition dynamics. r(st, at) > 0 is the reward function and
c1:m(st, at) are m cost functions. γ ∈ (0, 1) is the discount factor. A policy π(s) is a mapping from
states to actions. In our combustion optimization problem, the state, action, reward and costs are set
as follows:

• States S . We use the chemical property of the coal and sensor data that relevant to the combustion
process of a TPGU as states, including temperature, pressure, wind, and water volume as well as
other sensor readings of different stages in the combustion process described in Section 2.1.

• Actions A. We consider all the key control variables that impact combustion process in a TPGU as
actions, such as the adjustment of the valves and baffles. All the actions are continuous.

• Reward function r. We model the reward as a weighted combination of combustion efficiency
Effi and reduction in NOx emission Emi , i.e. rt = αrEffi t + (1 − αr)Emi t, where αr can be
adjusted according to the need of the power plant.

• Cost functions c1:m. We model a series of safety constraints as costs, such as load, internal
pressure, and temperature satisfaction, violating these constraints will lead to a positive penalty
value. We denote a weighted combination of costs as c̃(s, a) =

∑m
i=1 α

i
cci(s, a), where α1:m

c are
set according to expert opinion.

In our combustion optimization problem, we assume no interaction with the actual TPGU and only
have a static, offline historical operational dataset B = (s, a, s′, r, c1:m), generated by unknown
behavior policies from TPGU operators. Our goal is to learn a policy π∗(s) from B that maximizes
the expected discounted reward R(π) = Eπ[

∑∞
t=0 γ

tr(st, at)] while controlling the constraints of
the expected discounted combined costs C(π) = Eπ[

∑∞
t=0 γ

tc̃(st, at)] below a given threshold l,
mathematically:

π∗ = argmax
π

R(π)

s.t. C(π) ≤ l
(1)

2.3 Overall System Framework

DeepThermal consists of two parts: offline learning and online serving, which is illustrated in Figure
2. Due to the complexity of the combustion process in a TPGU, it is impossible to build a high-fidelity
simulation environment. Solely using 1 or 2 years’ operational data may not be sufficient to find the
optimized control strategy. In the offline learning part, DeepThermal learns a data-driven simulator
and adopts a new model-based offline learning framework (MORE) to combat the limited data issue.
The combustion simulator is used to provide supplement dynamics data to facilitate RL training. It is
also used to generalize beyond the existing stereotyped control strategies of human operators recorded
in data. However, as the simulator is learned from data, we do not fully trust the simulated data
and use them with extra caution. Inside MORE, we introduce several specially designed strategies,
including restrictive exploration and hybrid training to filter problematic simulated data and introduce
reward penalties on OOD samples to guide offline RL policy learning away from high-risk areas.

Historical
operational data

Offline Learning

Combustion
process simulator

Offline RL
alg. (MORE)

Log

Hybrid training

Training

Actual TPGU
Online Serving

Policy

Real-time
sensor data

System
backend

Control
Data

pre-processing

Real-time states

Optimized
actions

System
frontend

Figure 2: Overall framework of the DeepThermal system

4

During online serving, the learned RL policy outputs optimized actions according to the state
information processed from real-time sensor data streams by the system backend. The system
frontend displays the optimized control strategies to human operators, who adjust the combustion
control of a TPGU.

As conditions of the equipment and devices inside a TPGU can change or deteriorate over time.
DeepThermal is designed to be completely data-driven, which allows re-collecting the newly gener-
ated operational data from the TPGU for RL policy re-training and fine-tuning every few months.
After every few months, we can re-collect the newly generated operational data of a TPGU to finetune
the existing RL policy. This enables the models in DeepThermal to adapt to the current condition of
the TPGU, providing an evolving optimization solution to a slowly changing system.

3 Combustion Process Simulator

DeepThermal learns a data-driven combustion process simulator from historical operational data of a
TPGU, which serves as an approximated dynamics model f(st, at) = ŝt+1 to generated future states.
Accurately fitting the dynamics of the combustion process is very challenging. TPGUs are highly
complex, large, and partially observed open systems. Due to extremely high temperature and pressure
in certain parts of a TPGU, some system state information is not fully captured by sensors. External
factors like ambient temperature and chemical properties of the coal also impact combustion. Most
importantly, the involvement of high-dimensional states and actions, complicated internal dependency
structure among variables, combined with relatively limited historical operational data jointly pose
great difficulty for the modeling process.

We propose a large deep recurrent neural network (RNN) as the combustion process simulator, with
its internal cell structure specially designed according to the actual physical process. As shown in
Figure 3, the input state-action pairs are split into 3 blocks to encode their physical and hierarchical
dependencies, and the long short term memory (LSTM) layers are used to capture the temporal
correlations. Specifically, we first model the coal pulverizing stage by considering the related states
sct and actions act together with the external inputs set (e.g. environment temperature and chemical
properties of the coal), and predict the next coal pulverizing related states sct+1. We then combine
the impact from the coal pulverizing stage (encoded in the hidden states hct) with the states sbt and
actions abt of burning stage to predict the next state sbt+1. Lastly, impacts of burning stage hbt are
combined with the states sst and actions ast of steam circulation stage to predict the related states of
next time step sst+1. This design embeds domain knowledge in the network structure, which helps to

LSTM

External input

Coal pulverizing

FC

Coal Pulverizing

LSTM

Burning

FC

LSTM

Steam circulation

FC

Burning

Steam Circulation

RNN Celle

ts

,c c

t ts a
,c c

t th o

Coal pulverizing

1

c

ts

,b b

t ts a

,s s

t ts a

,b b

t th o

,s s

t th o

1 1,c c

t th o

1 1,b b

t th o

1 1,s s

t th o

Burning

1

b

ts

Steam circulation

1

s

ts

c

th

b

th

s

th

LSTM

External input

Coal pulverizing

FC

Coal Pulverizing

LSTM

Burning

FC

LSTM

Steam circulation

FC

Burning

Steam Circulation

1

e

ts

1 1,c c

t ts a

1 1,c c

t th o

Coal pulverizing

2

c

ts

1 1,b b

t ts a

1 1,s s

t ts a

1 1,b b

t th o

1 1,s s

t th o

,c c

t th o

,b b

t th o

,s s

t th o

Burning

2

b

ts

Steam circulation

2

s

ts

1

c

th

1

b

th

1

s

th

Figure 3: Design of the combustion process simulator

5

alleviate the impact of missing information in the partially observed system, and greatly improves
model accuracy and robustness.

The parameters of the simulator are learned by minimizing the mean squared error (MSE) of the
actual and predicted states. To further strengthen the simulator, following techniques are applied:

• Seq2seq and scheduled sampling: We use sequence to sequence structure and scheduled sampling
(Bengio et al., 2015) to improve long-term prediction accuracy of the simulator.

• Noisy data augmentation: We add gradually vanishing Gaussian noises on the state inputs during
simulator training, which can be perceived as a means of data augmentation. This treatment helps
to improve model robustness and prevent overfitting.

4 MORE: An Improved Model-based Offline RL Framework

In this Section, we introduce the core RL algorithm used in DeepThermal: Model-based Offline RL
with Restrictive Exploration (MORE).

MORE tackles the challenge of offline policy learning under constraints with an imperfect simulator.
The framework of MORE is illustrated in Figure 4. It introduces an additional cost critic to model and
enforces safety constraints satisfaction of the combustion optimization problem. MORE quantifies
the risks imposed by the imperfect simulator using a novel restrictive exploration scheme, from the
perspective of both prediction reliability (measured by model sensitivity) as well as the possibility of
being OOD samples (measured by data density in the behavioral data). Specifically, MORE trusts
the simulator only when it is certain about the outputs and adds reward penalty on potential OOD
predictions to further guide the actor to explore in high density regions. Finally, MORE ingeniously
combines the real data and carefully distinguished simulated data to learn a safe policy through a
hybrid training procedure.

Ensemble Reward critics

Actor

Cost critic

Batch data

(, , , �, �)

Simulated

data

��� (�, �) ��(�, �)

� � → �∗

�� , �� → ��

�

Restrictive

exploration

Hybrid training

Pretrain

Combustion

process simulator

Figure 4: The framework of MORE

4.1 Safe Policy Optimization

MORE optimizes a policy to maximize long-term rewards while satisfying safety constraints re-
quirements. It uses two Q-functions, Qr, and Qc, for reward maximization and cost evaluation. The
policy optimization is performed on especially combined real-simulation data D (see hybrid training
subsection for details) as follows:

πθ := max
π

Es∼DEa∼π
[
min
j=1,2

Qrj (s, a)

]
s.t. Ea∼π[Qc(s, a)] ≤ l

(2)

MORE adopts the Clipped Double-Q technique (Fujimoto et al., 2018) by using two Qr functions
to penalize the uncertainty in Qr and alleviate the overestimation issue that commonly occurs in

6

offline RL. This trick is not applied to the Qc-network as it could potentially underestimate the cost
value. To solve this problem, we employ the Lagrangian relaxation procedure (Boyd et al., 2004) by
introducing following Lagrangian function:

L(π, λ) =Es∼DEa∼π
[
min
j=1,2

Qrj (s, a)

]
− λ (Ea∼π[Qc(s, a)]− l)

where λ is Lagrangian multiplier. The original constrained problem (Eq. 2) can be converted to
following unconstrained form:

(π∗, λ∗) = argmin
λ≥0

max
π
L(π, λ). (3)

λ← [λ+ η(Ea∼π[Qc(s, a)]− l)]+ (4)

where η is the step size and [x]+ = max{0, x} is the projection onto the dual space (λ ≥ 0). We use
the iterative primal-dual update method to solve the above unconstrained minimax problem. In the
primal stage, we fix the dual variable λ and perform policy gradient update on policy π. In the dual
stage, we fix the policy π and update λ by dual gradient ascent (Eq. 4).

4.2 Restrictive Exploration

Like many real-world tasks, we only have an imperfect simulator for the combustion optimization
problem. The simulator/model is learned entirely from the data and possible to make inaccurate
predictions that impact RL training. The inaccuracies are mainly from two sources: 1) lack of data to
fully train the model in certain regions; 2) unable to well fit data due to limited model capability or
system complexity. Note the first case is not an absolute criteria to detect model inaccuracy. Models
can perform reasonably well in low density regions of data if the pattern is easy to learn. Under this
setting, we should encourage exploration with the model even if the resulting samples lie outside the
dataset distribution.

With this intuition, we design a new restrictive exploration strategy to fully utilize the generalizable
of the simulator from both the model and data perspective. The key insight is to only consider the
samples that the simulator is certain, and then further distinguish whether the simulated samples are
in data distribution or not.

Model sensitivity based filtering. We first filter out those unreliable simulated data if the model
is uncertain. Previous work (Novak et al., 2018) has shown that model sensitivity can be a viable
measure for model generalizability on data samples. We use this metric to detect if the model
is certain or well generalizable on simulated state-action pairs from the model’s perspective. For
sensitivity quantification, we inject K i.i.d. Gaussian noises εi ∼ N(0, σI), i ∈ {1, . . . ,K} on
a input state-action pair (s, a) of the model, and compute the variance of the output perturbations
u = V ar[εy] as the sensitivity metric, where εy =

[
f((s, a) + εi)− f(s, a)

]K
i=1

, and σ controls the
degree of perturbation. A large u suggests the model is sensitive to input perturbation at (s, a), which
is an indication of uncertainty or lack of prediction robustness at this point (Novak et al., 2018).

Let τs be a batch of simulated transitions {(s, a, s′, r, c̃)} at each training step t and us,t be the
sensitivity of τs. MORE filters problematic simulated transitions using following strategy:

τm := {τs|us,t < lu} (5)

where lu is a predefined threshold. In practice, we choose it to be the βu-percentile value of sensitivity
evaluated at all state-action pairs in the offline dataset B.

Data density based filtering. The lack of data in low density regions of B may provide insufficient
information to describe the system dynamics completely and accurately. This can lead to unreliable
OOD simulated transitions that cause exploitation error during policy learning. To address this issue,
we propose the data-density based filtering to encourage exploration in high density regions, while
cautioning about potential OOD samples. The key insight is to carefully distinguish between positive
(in high density region) and negative (in low density or OOD) simulated samples. We trust more on
positive samples while penalizing on the negative samples.

In practical implementation, we use a state-action variational autoencoder (VAE) (Kingma and
Welling, 2013) to fit the data distribution of B. VAE maximize the following evidence lower bound
(ELBO) objective that lower bounds the actual log probability density of data:

Ez∼qω2
[log pω1

(s, a|s, a, z)]−DKL [qω2
(z|s, a)‖N(0, 1)] (6)

7

where the first term represents the reconstruction loss and the second term is the KL-divergence
between the encoder output and the prior N(0, 1). We use ELBO to approximate the probability
density of data. Let τm be the simulation samples that passed model sensitivity based filtering at
training step t. We estimate data density pm of state-action pairs in τm with Eq. 6 and split τm to
positive samples τ+ and negative samples τ− with threshold lp.

τ+ := {τm|pm > lp}, τ− := {τm|pm ≤ lp} (7)

Like lu, we choose lp to be the βp-percentile ELBO values of all state-action pairs in the offline
dataset B.

Algorithm 1 Restrictive exploration
1: Require: Simulator f , threshold lu, lp, batch of real data transitions τn = {(s, a, s′, r, c̃)}n, and rollout

length H
2: for τ in τn do
3: Set ŝ1 = s, τ+ = ∅, τ− = ∅
4: for Rollout step: h = 1, .., H do
5: Generate simulated transition (ŝh, π(ŝh), ŝh+1, r̂h, ĉh), where (ŝh+1, r̂h, ĉh) = f(ŝh, π(ŝh))
6: // Model sensitivity based filtering
7: if Evaluated sensitivity u(ŝh, âh) < lu (follow Eq.5) then
8: // Data density based filtering

Compute data density pm(ŝh, âh) according to Eq.6
9: Add (ŝh, π(ŝh), ŝh+1, r̂h, ĉh) into positive sample set τ+ or negative set τ− according to Eq.7

10: Add reward penalties for samples in τ− according to Eq.8
11: end if
12: end for
13: end for
14: return (τ+, τ−)

4.3 Hybrid training

After quantifying the risks imposed by the imperfect simulator, MORE introduces a hybrid training
strategy to solve two questions:

1. How to differentiate the impact of positive and negative simulated samples obtained from the
restrictive exploration?

2. How to best blend real and simulated data for RL training?

In hybrid training, we keep the positive samples as their original forms to encourage fully exploiting
the generalizability of the model, but penalize the rewards of negative samples to guide policy learning
away from high-risk regions. We further combine the filtered simulated data with real data in a local
buffer rather than a global replay buffer. Moreover, we pretrain π, Qr and Qc with real data in order
to run RL algorithm with good initial parameters, which is observed to improve stability of training
and speed up convergence.

Reward penalization on negative samples. Several previous works in online and offline RL (Yu
et al., 2020; Kidambi et al., 2020; Shi et al., 2019) used penalized rewards to regularize policy
optimization against the negative impact of OOD samples. Unlike prior works that penalize rewards
of all simulation data to restrict policy update within data distribution, we propose a more delicate
strategy by softly penalizing the rewards as:

r̂(ŝt, ât)←
r̂(ŝt, ât)

1 + [η(lp − pm(ŝt, ât))]+
(8)

where [x]+ = max{x, 0} and η is a hyper-parameter to control the scale of reward penalty. It’s easy
to find that positive samples whose approximated density pm(ŝt, ât) higher than lp are not penalized
(see Eq.7). Only negative samples are penalized based on difference between pm(ŝt, ât) and lp. This
strategy encourages policy updates toward high reward directions suggested by positive samples,
providing the possibility to generalize beyond the offline dataset; while force policy updates away
from the area of negative samples, so as to avoid potential exploitation error on OOD samples.

8

Simulated

⋮

Batch

SimulatedBatch

SimulatedBatch

Training step 1

+

⋮

-

+ -

+ -
Generate

Generate

Generate

&combine

&combine

&combine

+

+

+

Dataset
Samples

Training step 2

Training step n

Training step 1

Training step 2

Training step n

Samples from
Simulated Buffer

Dataset
Samples

Simulated
Positive Samples

Simulated
Negative Samples

Batch

Batch

Batch

Figure 5: Illustration of hybrid training in MORE

Real-sim data combination. Rather than naïvely mixing real and simulated data as shown in the
left part of Figure 5, MORE constructs a special local bufferR to combine real, positive and negative
simulated data for training (right figure). As DeepThermal uses a RNN-based simulator, to improve
the prediction accuracy, we first use trajectories in the real data batch to preheat and update the
hidden states of the simulator, and then use it to roll out trajectories. We also control the proportion
of positive and negative samples in the simulated data with the percentile threshold βp. The choice of
βp controls the behavior of MORE to be either more aggressive to explore beyond the offline dataset
(with a small βp) or more conservative to avoid OOD errors (with a large βp).

The full algorithm of MORE is summarized in Algorithm 2. Further implementation details can be
found in the Appendix A.3.

Algorithm 2 Complete algorithm of MORE
1: Require: Offline dataset B
2: Pre-train actor πθ , reward critic ensemble {Qri(s, a|φri)}i=1,2 and cost critic Qc(s, a|φc) with real data.

Initialize target networks {Q′ri}
2
i=1 and Q′c with φ′ri ← φri and φ′c ← φc

3: for Training step: t = 1, ..., T do
4: Random sample mini-batch transitions τn from B
5: Obtain (τ+, τ−) using restrictive exploration (Algorithm 1)
6: Construct local bufferR = {(s, a, r, c, s′)} using τ+, τ− and τn
7: Set y = mini=1,2Q

′
ri (s

′, π(s′)) and z = Q′c (s
′, π(s′))

8: Update Qri by minimizing (Qri − (r + γy))2

9: Update Qc by minimizing (Qc − (c+ γz))2

10: Update policy πθ by Eq.3 using policy gradient
11: Update λ by Eq.4 using dual gradient ascent
12: Update target cost critic: φ′c ← τφc + (1− τ)φ′c
13: Update target reward critics: φ′ri ← τφri + (1− τ)φ′ri
14: end for

5 Experiments

In this section, we conduct extensive experiments on real-world TPGUs and standard offline RL
benchmarks to demonstrate the effectiveness of DeepThermal and the superior performance of MORE
compared with other state-of-the-art offline RL algorithms.

5.1 Dataset and Settings

We conduct experiments on both real TPGUs and standard offline RL benchmarks. The datasets and
settings are described as follows:

Real-world datasets and experiment settings. DeepThermal uses 1∼2 years’ historical operational
data from a power plant to train its models. Very old data are not used due to potentially different

9

patterns compared with current conditions of the TPGU, caused by changes and deteriorating of
equipment and devices. DeepThermal uses 800∼1000 sensors’ data from a typical TPGU. For
example, in the system deployed in CHN Energy Nanning Power Station, we considered more than
800 sensors and optimized about 100 control variables. A specially designed feature engineering
process is used to process these sensor data into about 100∼170 states and 30 ∼ 50 actions (differ for
TPGUs in different power plants). Some sensors values monitoring similar state as well as control
variables sharing the same operation mode are merged into single values to reduce problem dimension.
Finally, we perform re-sampling on the processed state and action data into equal 20∼30 second
(depending on the quality of the sensor data) interval data, which typically results in 1∼2 million
records for RL training.

We present the results of real-world experiments conducted in CHN Energy Nanning Power Station.
Additional results from CHN Energy Langfang Power Station are reported in the Appendix.

Datasets and settings for standard offline RL benchmarks. We evaluate and compare the perfor-
mance of MORE on the standard offline RL benchmark D4RL (Fu et al., 2020). D4RL provides
datasets specifically designed for the offline setting. We mainly focus on three locomotion tasks
(hopper, halfcheetah and walker2d) and two dataset types (medium and mixed) that are more relevant
to real-world applications. The datasets in D4RL are generated as follows:

• mixed: train a SAC policy (Haarnoja et al., 2018) until reaching a predefined performance threshold,
and take the replay buffer as the dataset.

• medium: generated using a partially trained SAC policy to roll out 1 million steps.

For all experiments on D4RL datasets, we model the dynamics model using fully connected neural
networks.

5.2 Evaluation of the Simulator

We compare the performance of the combustion process simulator with six baselines that commonly
used for time-series data prediction, including Auto-Regressive Integrated Moving Average (ARIMA),
Gradient Boosted Regression Trees (GBRT), Deep Neural Network (DNN), Long Short Term Memory
Network (LSTM) and Gated Recurrent Unit (GRU). Rooted mean squared error (RMSE) and the
mean absolute error (MAE) are used for evaluation. The detailed evaluation results are presented
in Table 1. It is observed that the proposed combustion process simulator significantly outperforms
all the baselines on both evaluation metrics. This demonstrates the effectiveness of the proposed
simulator, as well as the benefit of incorporating domain knowledge in the network design.

Table 1: Evaluation of the combustion process simulator

Model ARIMA GBRT DNN LSTM GRU Ours
RMSE 3.05e-3 1.97e-3 2.05e-3 1.69e-3 1.87e-3 6.54e-4
MAE 2.66e-2 2.65e-2 2.73e-2 2.50e-2 2.98e-2 1.55e-2

5.3 Real-World Experiments

To verify the effectiveness of DeepThermal, we conduct a series of before-and-after tests on real-
world TPGUs. The duration of these experiments ranges from 1 to 1.5 hours. During the experiment,
the human operator adjusted the control strategy of a TPGU according to the recommended actions
provided by the learned RL policy.

Figure 6 presents the experiment results on a TPGU of CHN Energy Nanning Power Station in three
different load settings (270MW, 290MW, 310MW). It is observed that DeepThermal effectively
improves combustion efficiency in all three load settings. In the 270MW, 290MW and 310MW
experiments, the optimized control strategy achieved the maximum increase of 0.52%, 0.31% and
0.48% on the combustion efficiency in about 60 minutes compared with the initial values. The
average NOx concentrations before the denitrification reactor remain at a relative stable level. We
also present three key indicators that reflect sufficient combustion, including carbon content in the fly
ash, oxygen content of flue gas and flue/exhaust gas temperature. Carbon content in the fly ash is the
remaining combustible carbon content in the fly ash of the furnace outlet, the oxygen content of flue
gas measures the excess air content after combustion, and flue/exhaust gas temperature measures the

10

92.7
93.0
93.3 Combustion efficiency (%)

480

560

640
Average Nox (mg/Nm3)

3.0

3.2

3.4 Carbon Content in the Fly Ash (%)

6.5

7.0

7.5
Oxygen Content of Flue Gas (%)

14:40 14:50 15:00 15:10 15:20 15:30 15:40 15:50 16:00
120

123

126
Flue/Exhaust Gas Temperature ()

(a) 270 MW experiment

92.1

92.4

92.7 Combustion efficiency (%)

480

560

640
Average Nox (mg/Nm3)

3.2
3.3
3.4

Carbon Content in the Fly Ash (%)

6.5

7.0

7.5 Oxygen Content of Flue Gas (%)

15:50 16:00 16:10 16:20 16:30 16:40 16:50 17:00
126

128

130 Flue/Exhaust Gas Temperature ()

(b) 290MW experiment

92.4

92.7

93.0 Combustion efficiency (%)

480

560

640
Average Nox (mg/Nm3)

3.2

3.4

3.6
Carbon Content in the Fly Ash (%)

6.6
6.9
7.2

Oxygen Content of Flue Gas (%)

14:00 14:10 14:20 14:30 14:40 14:50 15:00 15:10 15:20
123

126

129 Flue/Exhaust Gas Temperature ()

(c) 310MW experiment

Figure 6: Real-world experiments at CHN Energy Nanning Power Station

(a) Ablation of βu (b) Ablation of βp (c) Evaluation of different safety constraints l

Figure 7: Ablation study on MORE

amount of heat loss. The lower of these three values, the more sufficient combustion is achieved. In
all three experiments, these three indicators achieved a certain level of decrease, which provides clear
evidence of combustion improvement.

Additional real-world experiment results on another power plant (CHN Energy Langfang Power
Station) are reported in the Appendix A.2. due to space limit. DeepThermal achieved 0.51%∼0.65%
increase in combustion efficiency after control optimization.

5.4 Evaluation on Offline RL Benchmarks

In this subsection, we further investigate the performance of the proposed model-based offline RL
framework MORE on standard offline RL benchmark D4RL.

Comparative Evaluations. We compare MORE against the state-of-the-art offline RL algorithms,
including model-free algorithms such as BCQ (Fujimoto et al., 2019), BEAR (Kumar et al., 2019)
and BRAC-v (Wu et al., 2019) that constrain policy learning to stay close to the behavior policy using
various divergence metrics. We also compare against model-based offline RL algorithms including
MOPO (Yu et al., 2020) that follows MBPO (Janner et al., 2019) with additional reward penalties. We
further compare against Behavior Cloning (BC) to examine whether our framework indeed performs
effective RL, instead of simply copying strategies in data. We omit the cost critic of MORE in these
experiments, as there are no safety constraints in corresponding D4RL tasks.

The comparative results are presented in Table 2. It is observed that MORE matches or outperforms
both the model-free and model-based baselines in most tasks. MOPO is shown to outperform model-
free methods by a large margin in the mixed datasets, while performs less well on the medium datasets
due to the lack of action diversity. MORE matches the performance of MOPO on the mixed datasets
while greatly surpasses MOPO on the medium datasets. We hypothesize that conditionally removing
uncertain simulated samples (via model sensitivity based filtering) as well as introducing data-density

11

Table 2: Results for D4RL datasets, averaged over 3 random seeds

Dataset BC BEAR BRAC-v BCQ MBPO MOPO MORE
halfcheetah-medium 4202.7 4513.0 5369.5 4767.9 3234.4 4972.3 5970

hopper-medium 924.1 1674.5 1031.4 1752.4 139.9 891.5 1264
walker2d-medium 302.6 2717.0 3733.4 2441.3 582.8 817.0 3649
halfcheetah-mixed 4488.2 4215.1 5419.2 4463.9 5593.0 6313.0 5790

hopper-mixed 364.4 331.9 9.7 688.7 1600.8 2176.8 2100
walker2d-mixed 518.5 1161.4 36.2 1057.8 1019.1 1790.7 1947

based reward penalties on OOD samples provide more reliable and informative simulated data for RL
policy learning, to achieve good results with a potentially imperfect model.

Ablation Study We conduct a series of ablation studies on halfcheetah environment to investigate
how different components impact the performance of MORE.

• Evaluation on the model sensitivity threshold βu. It can be shown in Figure 7(a) that, in the mixed
dataset where the simulator can learn and generalize well, MORE with βu = 70% outperforms
βu = 40% (more tolerant to encourage generalization). While in the medium dataset, MORE with
βu = 70% performs inferior than βu = 40% due to allowing too much problematic samples from
the imperfect dynamics models.

• Evaluation on the data density threshold βp. We find in Figure 7(b) that smaller βp (βp = 10%)
performs better in the mixed dataset, while a medium value βp (βp = 40%) works better in the
medium dataset. This again suggests that it is beneficial to be more tolerant to potential OOD
simulated samples when the dynamics model is reliable. However, when the dynamics model is far
from perfect, carefully controlling the ratio between positive and negative samples is important to
achieve the best performance.

Additional Evaluation under Safety Constraints. We conduct additional experiments to demon-
strate the performance of MORE under safety constraints. We use the halfcheetah-mixed dataset and
further introduce the safety cost as the discounted cumulative torque that the agent has applied to
each joint. This mimics the situation that one constrains the robot from using high torque values
to prolong their motor life. The per-state cost c(s, a) is the amount of torque the agent decided to
apply at each step, i.e. the L2-norm of the action vector, ‖a‖2. It should be noted that by preventing
the agent from using high torque values, the agent may only be able to learn a sub-optimal policy.
We test MORE under different constraint limit l ∈ {30, 40, 50}. It can be shown in Figure 7(c) that
MORE is robust to different l. In all the tests, the cumulative costs are controlled below the given
constraint limits.

6 Real-World System Deployment

DeepThermal has already been successfully deployed in four large thermal power plants in China,
including CHN Energy Nanning and Langfang Power Stations, Shanxi Xingneng Power Station
and Huadian Xinzhou Guangyu Power Station. Real-world experiments have been conducted in all
four power plants to test the effectiveness of DeepThermal. Our system achieves good results while
ensures safe operation in all these four power plants, and has passed the project acceptance checks by
industry experts, whom consider highly on the innovation as well as the effectiveness of our system.

The left figure in Figure 8 shows the main interface of the DeepThermal system deployed in CHN
Energy Nanning Power Station. The interface displays real-time values of major states as well as
optimized actions provided by the learned RL policy. The operator can easily follow the guidance
of the recommended strategy to adjust their control operation, so as to improve system combustion
efficiency. The right figure in Figure 8 shows the scene that the operator of the power plant using
DeepThermal for reference to adjust the combustion control in the central control room. More
detailed information about system implementation and deployment in other power plants can be
found in the Appendix A.1.

12

Figure 8: Interface of DeepThermal deployed in CHN Energy Nanning Power Station (left) and the
control room (right)

7 Related Work

7.1 Complex System Control

PID control (Astrom and Hagglund, 2006) is the most common approach for industrial system
control. Although PID ensures safe and stable control, its performance is limited due to insufficient
expressive power and the inability to handle large systems. Model predictive control (MPC) (Garcia
et al., 1989) is another widely used control method, that utilizes an explicit process model to predict
the future response of the system and performs control optimization accordingly. MPC has been
applied to many areas, such as refining, petrochemicals, food processing, mining/metallurgy and
automotive applications (Qin and Badgwell, 2003). However, applying MPC in large-scale stochastic
systems is often infeasible due to their heavy online computational requirements. Many real-world
MPC applications decompose the original optimization problem into meaningful smaller-scale sub-
problems in order to achieve high frequency control.

RL overcomes the above challenges by learning the optimal strategy beforehand, a concept similar
to parametric programming in explicit model predictive control (Bemporad et al., 2002). Previous
works that use RL for real-world control tasks typically rely on high-fidelity simulators (Li, 2019),
such as SUMO (Lopez et al., 2018) used in autonomous driving systems, Virtual-Taobao (Shi
et al., 2019) used in recommendation systems, and MuJoCo (Todorov et al., 2012) used in robotic
locomotion and manipulation tasks. However, high-fidelity simulators are impossible to obtain in
most real-world complex system control tasks, using data-driven RL algorithms hold the promise of
automated decision-making informed only by logged data, thus getting rid of the sim-to-real dilemma
(Dulac-Arnold et al., 2020).

7.2 Offline Reinforcement Learning

Offline RL (also known as batch RL (Lange et al., 2012)) considers the problem of learning poli-
cies from offline data without environment interaction. One major challenge of offline RL is the
distributional shift issue (Levine et al., 2020), which incurs when the policy distribution deviates
largely from the data distribution. Although off-policy RL methods (Mnih et al., 2013; Lillicrap
et al., 2016) are naturally designed for tackling this problem, they typically fail to learn solely from
fixed offline data, and often require a growing batch of online samples for good performance. Recent
model-free methods attempted to solve this problem by constraining the learned policy to be “close”
to the behavior policy. BCQ (Fujimoto et al., 2019) adds small perturbation to the behavior policy in
order to stay close to the data distribution, BEAR (Kumar et al., 2019) and BRAC (Wu et al., 2019)
incorporate additional distributional penalties (such as KL divergence or MMD). While performing
well in single-modal datasets (e.g., medium datasets), model-free methods are shown to have limited
improvements in multi-modal datasets (e.g., mixed datasets and real-world datasets), due to over-strict
behavioral constraints.

Model-based offline RL algorithms provide a nice solution to this problem, they adopt a pessimistic
MDP framework (Kidambi et al., 2020), where the reward is penalized if the learned dynamic model

13

cannot make an accurate prediction. MOPO (Yu et al., 2020) learns an ensemble of dynamic models
that output Gaussian distributions. It extends MBPO (Janner et al., 2019) with an additional reward
penalty on generated transitions with large variance from the learned dynamic models. MOReL
(Kidambi et al., 2020) terminates the generated trajectories if the state-action pairs are detected
to be unreliable, i.e. the disagreement within model ensembles is large. MBOP (Argenson and
Dulac-Arnold, 2021) learns a dynamics model, a behavior policy and a truncated value function
to perform model-based offline planning, where the actions are sampled from the learned behavior
model instead of the Gaussian distribution. Note that all these methods largely depend on the quality
of learned dynamic models, while MORE reduces the reliance on the model by using information
from both the model and offline data.

8 Conclusion and Perspectives

In this paper, we develop DeepThermal, a new data-driven AI system for optimizing the combustion
control strategy for TPGUs. To the best knowledge of the authors, DeepThermal is the first offline
RL application that has been deployed to solve real-world mission-critical control tasks. The core of
DeepThermal is a new model-based offline RL framework, called MORE. MORE strikes the balance
between fully utilizing the generalizability of an imperfect model and avoiding exploitation error
on OOD samples. DeepThermal has been successfully deployed in four large coal-fired thermal
power plants in China. Real-world experiments show that DeepThermal effectively improves the
combustion efficiency of TPGUs. We also conduct extensive comparative experiments on standard
offline RL benchmarks to demonstrate the superior performance of MORE against the state-of-the-art
offline RL algorithms.

Reliable control using RL in real-world scenarios is a challenging task that still needs a lot of research.
Many open problems remain and worth further exploration, including 1) designing data-efficient
offline RL policies under small offline datasets with limited state-action space coverage. 2) Finding
better uncertainty and generalizability evaluation measures for models/simulators on unknown data
samples. 3) Exploring new offline RL learning schemes to combat distributional shift while avoiding
over-conservative police learning. 4) Developing better safety constraint modeling schemes to
enforce strict constraint satisfaction. And 5) improving policy robustness with limited offline data
and potential inaccuracies in the input data (e.g. random errors in the sensor readings. Incorporating
adversarial learning into the offline RL training process is a possible direction to make policy more
robust against random or targeted perturbations.

We hope our work can shed light on applying offline, data-driven RL algorithms to solve real-world
complex system control tasks, where one could train RL algorithms offline using abundant logged
system operational data, and provides reliable policies for safe and high-quality control.

References
Altman, E. (1999). Constrained Markov decision processes, volume 7. CRC Press.

Argenson, A. and Dulac-Arnold, G. (2021). Model-based offline planning. In International Confer-
ence on Learning Representations.

Astrom, K. J. and Hagglund, T. (2006). Advanced pid control.

Bemporad, A., Morari, M., Dua, V., and Pistikopoulos, E. N. (2002). The explicit linear quadratic
regulator for constrained systems. Automatica, 38(1):3–20.

Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. (2015). Scheduled sampling for sequence
prediction with recurrent neural networks. In Proceedings of the 28th International Conference on
Neural Information Processing Systems-Volume 1, pages 1171–1179.

Boyd, S., Boyd, S. P., and Vandenberghe, L. (2004). Convex optimization. Cambridge university
press.

Dulac-Arnold, G., Levine, N., Mankowitz, D. J., Li, J., Paduraru, C., Gowal, S., and Hester, T. (2020).
An empirical investigation of the challenges of real-world reinforcement learning. arXiv preprint
arXiv:2003.11881.

14

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine, S. (2020). D4rl: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:2004.07219.

Fujimoto, S., Hoof, H., and Meger, D. (2018). Addressing function approximation error in actor-critic
methods. In International Conference on Machine Learning, pages 1587–1596.

Fujimoto, S., Meger, D., and Precup, D. (2019). Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pages 2052–2062. PMLR.

Garcia, C. E., Prett, D. M., and Morari, M. (1989). Model predictive control: theory and practice—a
survey. Automatica, 25(3):335–348.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International Conference on
Machine Learning, pages 1861–1870.

Janner, M., Fu, J., Zhang, M., and Levine, S. (2019). When to trust your model: Model-based policy
optimization. In Advances in Neural Information Processing Systems, pages 12519–12530.

Kalogirou, S. A. (2003). Artificial intelligence for the modeling and control of combustion processes:
a review. Progress in energy and combustion science, 29(6):515–566.

Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims, T. (2020). Morel: Model-based offline
reinforcement learning. In Neural Information Processing Systems (NeurIPS).

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Kumar, A., Fu, J., Soh, M., Tucker, G., and Levine, S. (2019). Stabilizing off-policy q-learning
via bootstrapping error reduction. In Advances in Neural Information Processing Systems, pages
11761–11771.

Lange, S., Gabel, T., and Riedmiller, M. (2012). Batch reinforcement learning. In Reinforcement
learning, pages 45–73. Springer.

Lee, K. Y., Heo, J. S., Hoffman, J. A., Kim, S.-H., and Jung, W.-H. (2007). Neural network-based
modeling for a large-scale power plant. In 2007 IEEE Power Engineering Society General Meeting,
pages 1–8. IEEE.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-end training of deep visuomotor
policies. The Journal of Machine Learning Research, 17(1):1334–1373.

Levine, S., Kumar, A., Tucker, G., and Fu, J. (2020). Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint arXiv:2005.01643.

Li, Y. (2019). Reinforcement learning applications. arXiv preprint arXiv:1908.06973.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D.
(2016). Continuous control with deep reinforcement learning. In ICLR (Poster).

Liu, X. and Bansal, R. (2014). Integrating multi-objective optimization with computational fluid
dynamics to optimize boiler combustion process of a coal fired power plant. Applied energy,
130:658–669.

Lopez, P. A., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flötteröd, Y.-P., Hilbrich, R., Lücken, L.,
Rummel, J., Wagner, P., and Wießner, E. (2018). Microscopic traffic simulation using sumo. In
2018 21st International Conference on Intelligent Transportation Systems (ITSC), pages 2575–
2582. IEEE.

Ma, L. and Lee, K. Y. (2011). Neural network based superheater steam temperature control for a
large-scale supercritical boiler unit. In 2011 IEEE Power and Energy Society General Meeting,
pages 1–8. IEEE.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller, M.
(2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.

15

Novak, R., Bahri, Y., Abolafia, D. A., Pennington, J., and Sohl-Dickstein, J. (2018). Sensitivity and
generalization in neural networks: an empirical study. In International Conference on Learning
Representations.

Qin, S. J. and Badgwell, T. A. (2003). A survey of industrial model predictive control technology.
Control engineering practice, 11(7):733–764.

Shi, J.-C., Yu, Y., Da, Q., Chen, S.-Y., and Zeng, A.-X. (2019). Virtual-taobao: Virtualizing real-world
online retail environment for reinforcement learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 4902–4909.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker,
L., Lai, M., Bolton, A., et al. (2017). Mastering the game of go without human knowledge. nature,
550(7676):354–359.

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033.
IEEE.

Wu, Y., Tucker, G., and Nachum, O. (2019). Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361.

Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J., Levine, S., Finn, C., and Ma, T. (2020). Mopo:
Model-based offline policy optimization. In Neural Information Processing Systems (NeurIPS).

16

A Appendix

A.1 Detailed System Implementation

In this section, we provide additional information for the DeepThermal systems deployed in real-
world thermal power plants. DeepThermal has been deployed and achieved some good results in four
large coal-fired thermal power plants in China. Figure 9 presents the DeepThermal systems deployed
in CHN Energy Langfang Power Station and Shanxi Xingneng Power Station.

The user interface of DeepThermal consists of an overview screen and several sub-interfaces display-
ing recommended control strategies for different combustion control stages (e.g. coal pulverizing,
burning, air circulation and steamer system, etc.). The leftmost figures in Figure 9 show the overview
screens of DeepThermal. Information that are not obtainable from sensors can be manually inputted
in the bottom-left part in the overview screen, such as the chemical property of the coal. The figures
in the middle are the sub-interfaces of the burning stage, which display recommended values for
valves of the secondary blowers in the burner. Other sub-interfaces are not presented due to space
limit. The rightmost figures in Figure 9 show the scene that the operator using DeepThermal to adjust
their control strategy in the central control room.

DeepThermal displays two lines of values for each control variable in the interface. The value in the
top line is the current control value. The value in the bottom with red, yellow or blue color marks the
recommended value from the learned RL policy. The red or yellow indicate that the current control
strategy has a large or medium deviation from the optimal policy, which should be adjusted. The
operator in the central control room can easily adjust his control operation following the guidance of
this system.

For each power plant, the user interface style of DeepThermal is customized to meet the needs of
power plant clients. The interface layouts are also redesigned to match with the interface of the
existing distributed control system (DCS) in the power plant. This allows operators easily locating
the corresponding control element and adapting to the guidance from DeepThermal. Despite the
differences in the system frontend, the RL algorithm module and system backend remain the same
for different power plants.

(a) System deployed in CHN Energy Langfang Power Station

(b) System deployed in Shanxi Xingneng Power Station

Figure 9: System interfaces and control room usage of DeepThermal in two thermal power plants in
China

17

A.2 Extra Real-World Experiments

In this section, we report results from recent real-world experiments conducted at CHN Energy
Langfang Power Station in Figure 10. DeepThermal system uses more than 700 sensors in the TPGU
and optimizes the control strategy involving more than 70 control variables. See the trend analysis
chart and the actual measurement record table for details.

Experiment (a) was conducted in the 250MW load setting on July 17, 2020. The test started at 15:20,
and ended at 16:23. The optimized control strategy achieved the maximum increase of 0.56% on the
combustion efficiency and the maximum decrease of 9.8°C on the exhaust gas temperature in about
60 minutes compared with the initial values. The average NOx concentrations, the oxygen content of
flue gas remain at a relatively stable level.

Experiment (b) was carried out at 14:36-15:55 on July 18, 2020 in the 200MW load setting. The
initial value of combustion efficiency was 93.34%., and it reached 93.99% after the adjustment in
about 60 minutes, the optimized control strategy achieved a maximum increase of 0.65%. The average
NOx concentrations reduced from 128.46mg/Nm3 to 118.61mg/Nm3, so the strategy achieved the
maximum decrease of about 10mg/Nm3. The exhaust gas temperature also dropped from 136.7°C
to 128.1°C. Other indicators also achieved a certain level of decrease.

Experiment (c) was conducted in the 300MW load setting on July 22, 2020. The test started at 14:10
and ended at 16:15. After optimization, the combustion efficiency rose from 93% to 93.51%, the
optimized control strategy achieved the maximum increase of about 0.51%; The carbon content in the
fly ash decreased from 0.56% to 0.38% in about 60 minutes with small turbulence. In three different
load settings (200MW, 250MW,300MW), DeepThermal effectively improves combustion efficiency
at a certain level and decreases the other three main indicators as well.

93.6

93.9

94.2 Combustion efficiency (%)

120

130

140
Average Nox (mg/Nm3)

0.30
0.35
0.40

Carbon Content in the Fly Ash (%)

3.0
3.5
4.0

Oxygen Content of Flue Gas (%)

15:00 15:10 15:20 15:30 15:40 15:50
128

132

136

Flue/Exhaust Gas Temperature ()

(a) 250 MW experiment

93.6

94.0
Combustion efficiency (%)

110
120
130

Average Nox (mg/Nm3)

0.22

0.24

0.26
Carbon Content in the Fly Ash (%)

2.5
3.0
3.5

Oxygen Content of Flue Gas (%)

13:20 13:30 13:40 13:50 14:00 14:10 14:20 14:30
129
132
135

Flue/Exhaust Gas Temperature ()

(b) 200MW experiment

93.0

93.3

93.6 Combustion efficiency (%)

250

275

Average Nox (mg/Nm3)

0.3

0.4

0.5
Carbon Content in the Fly Ash (%)

2.8
3.2
3.6

Oxygen Content of Flue Gas (%)

14:15 14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15
148

150

152
Flue/Exhaust Gas Temperature ()

(c) 300MW experiment

Figure 10: Real-world experiments at CHN Energy Langfang Power Station

A.3 Implementation Details

Hyper-parameters for Real-World Experiments. For the combustion process simulator, each
LSTM cell has 256 hidden units. For the sequence to sequence structure, we set the encoder length as
20, and the decoder length as 10. The model is trained with the Adam optimizer and a learning rate
of 1e-4. In the scheduled sampling, the probability of replacing the true data with the generated ones
decays by 1e-4 for every training step. For the noisy data augmentation, the noises are sampled from
N(0, 0.025). The actor, critic and data density VAE are optimized using Adam and we use a fully
connected neural network for function approximation of them. Their learning rate are 1e− 6, 1e− 5.
and 1e− 3. Both the encoder and the decoder of VAE have three hidden layers (1024,1024,1024) by
default. We train the VAE for 1e6 timesteps with batch size 256. The policy and the critic have three
hidden layers (256, 128, 64). And they are trained for 1e6 timesteps with batch size 256.

Hyper-parameters for Offline RL Benchmarks. For all function approximators, we use fully
connected neural networks with RELU activations. The pre-trained dynamics DNN has four hidden

18

layers (200, 200, 200, 200), the learning rate of DNN is 1e− 4. The pre-trained state-action VAE
has two hidden layers (750, 750), the learning rate of VAE is 1e − 4. For policy networks, we
use tanh (Gaussian) on outputs. The learning rate of Q-function is always 1e − 3. As in other
deep RL algorithms, we maintain source and target Q-functions with an update rate 0.005 per
iteration. We use Adam for all optimizers. The batch size is 256 and γ is 0.99. The actor network is
2-layer MLP with 300 hidden units on each layer and the reward and cost critic network is 2-layer
MLP with 400 hidden units each layer. The learning rate of actor is 1e − 5. We search the model
sensitivity threshold βu ∈ {40, 70} and the data density threshold βp ∈ {10, 40, 70}. The rollout
length are given in Table 3, we search the rollout lengthH ∈ {1, 5} and use penalty coefficient η = 5.

Table 3: Rollout length H used in D4RL benchmarks

Env halfcheetah hopper walker2d
Type medium mixed medium mixed medium mixed

H 1 1 5 5 5 1

19

View publication statsView publication stats

https://www.researchgate.net/publication/349547320

	1 Introduction
	2 Overview
	2.1 Operation Mechanisms of TPGUs
	2.2 Preliminaries
	2.3 Overall System Framework

	3 Combustion Process Simulator
	4 MORE: An Improved Model-based Offline RL Framework
	4.1 Safe Policy Optimization
	4.2 Restrictive Exploration
	4.3 Hybrid training

	5 Experiments
	5.1 Dataset and Settings
	5.2 Evaluation of the Simulator
	5.3 Real-World Experiments
	5.4 Evaluation on Offline RL Benchmarks

	6 Real-World System Deployment
	7 Related Work
	7.1 Complex System Control
	7.2 Offline Reinforcement Learning

	8 Conclusion and Perspectives
	A Appendix
	A.1 Detailed System Implementation
	A.2 Extra Real-World Experiments
	A.3 Implementation Details

